Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2056–2065. doi: 10.1016/S0006-3495(00)76453-8

Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes.

T P McMullen 1, R N Lewis 1, R N McElhaney 1
PMCID: PMC1301095  PMID: 11023909

Abstract

We have examined the effects of cholesterol on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylserines by high-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy. We find that the incorporation of increasing quantities of cholesterol progressively reduces the temperature, enthalpy, and cooperativity of the gel-to-liquid-crystalline phase transition of the host phosphatidylserine bilayer, such that a cooperative chain-melting phase transition is completely or almost completely abolished at 50 mol % cholesterol, in contrast to the results of previous studies. We are also unable to detect the presence of a separate anhydrous cholesterol or cholesterol monohydrate phase in our binary mixtures, again in contrast to previous reports. We further show that the magnitude of the reduction in the phase transition temperature induced by cholesterol addition is independent of the hydrocarbon chain length of the phosphatidylserine studied. This result contrasts with our previous results with phosphatidylcholine bilayers, where we found that cholesterol increases or decreases the phase transition temperature in a chain length-dependent manner (1993. Biochemistry, 32:516-522), but is in agreement with our previous results for phosphatidylethanolamine bilayers, where no hydrocarbon chain length-dependent effects were observed (1999. Biochim. Biophys. Acta, 1416:119-234). However, the reduction in the phase transition temperature by cholesterol is of greater magnitude in phosphatidylethanolamine as compared to phosphatidylserine bilayers. We also show that the addition of cholesterol facilitates the formation of the lamellar crystalline phase in phosphatidylserine bilayers, as it does in phosphatidylethanolamine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of cholesterol. We ascribe the limited miscibility of cholesterol in phosphatidylserine bilayers reported previously to a fractional crystallization of the cholesterol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. In general, the results of our studies to date indicate that the magnitude of the effect of cholesterol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipid dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.

Full Text

The Full Text of this article is available as a PDF (114.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach D., Wachtel E. Thermotropic properties of mixtures of negatively charged phospholipids with cholesterol in the presence and absence of Li+ or Ca2+ ions. Biochim Biophys Acta. 1989 Feb 13;979(1):11–19. doi: 10.1016/0005-2736(89)90517-8. [DOI] [PubMed] [Google Scholar]
  2. Borochov N., Wachtel E. J., Bach D. Phase behavior of mixtures of cholesterol and saturated phosphatidylglycerols. Chem Phys Lipids. 1995 May 22;76(1):85–92. doi: 10.1016/0009-3084(94)02411-w. [DOI] [PubMed] [Google Scholar]
  3. Buboltz J. T., Feigenson G. W. A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta. 1999 Mar 4;1417(2):232–245. doi: 10.1016/s0005-2736(99)00006-1. [DOI] [PubMed] [Google Scholar]
  4. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  5. Huang J., Buboltz J. T., Feigenson G. W. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999 Feb 4;1417(1):89–100. doi: 10.1016/s0005-2736(98)00260-0. [DOI] [PubMed] [Google Scholar]
  6. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  7. Lewis R. N., Mak N., McElhaney R. N. A differential scanning calorimetric study of the thermotropic phase behavior of model membranes composed of phosphatidylcholines containing linear saturated fatty acyl chains. Biochemistry. 1987 Sep 22;26(19):6118–6126. doi: 10.1021/bi00393a026. [DOI] [PubMed] [Google Scholar]
  8. Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines. Biophys J. 2000 Oct;79(4):2043–2055. doi: 10.1016/S0006-3495(00)76452-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liscum L., Munn N. J. Intracellular cholesterol transport. Biochim Biophys Acta. 1999 Apr 19;1438(1):19–37. doi: 10.1016/s1388-1981(99)00043-8. [DOI] [PubMed] [Google Scholar]
  10. Mantsch H. H., Madec C., Lewis R. N., McElhaney R. N. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and 31P NMR spectroscopic studies. Biochemistry. 1985 May 7;24(10):2440–2446. doi: 10.1021/bi00331a008. [DOI] [PubMed] [Google Scholar]
  11. McMullen T. P., Lewis R. N., McElhaney R. N. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):119–134. doi: 10.1016/s0005-2736(98)00214-4. [DOI] [PubMed] [Google Scholar]
  12. McMullen T. P., Lewis R. N., McElhaney R. N. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. Biophys J. 1994 Mar;66(3 Pt 1):741–752. doi: 10.1016/s0006-3495(94)80850-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMullen T. P., Lewis R. N., McElhaney R. N. Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines. Biochemistry. 1993 Jan 19;32(2):516–522. doi: 10.1021/bi00053a016. [DOI] [PubMed] [Google Scholar]
  14. McMullen T. P., McElhaney R. N. Differential scanning calorimetric studies of the interaction of cholesterol with distearoyl and dielaidoyl molecular species of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. Biochemistry. 1997 Apr 22;36(16):4979–4986. doi: 10.1021/bi962815j. [DOI] [PubMed] [Google Scholar]
  15. McMullen T. P., Vilchèze C., McElhaney R. N., Bittman R. Differential scanning calorimetric study of the effect of sterol side chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behavior. Biophys J. 1995 Jul;69(1):169–176. doi: 10.1016/S0006-3495(95)79887-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McMullen T. P., Wong B. C., Tham E. L., Lewis R. N., McElhaney R. N. Differential scanning calorimetric study of the interaction of cholesterol with the major lipids of the Acholeplasma laidlawii B membrane. Biochemistry. 1996 Dec 24;35(51):16789–16798. doi: 10.1021/bi962098t. [DOI] [PubMed] [Google Scholar]
  17. Reinl H., Brumm T., Bayerl T. M. Changes of the physical properties of the liquid-ordered phase with temperature in binary mixtures of DPPC with cholesterol: A H-NMR, FT-IR, DSC, and neutron scattering study. Biophys J. 1992 Apr;61(4):1025–1035. doi: 10.1016/S0006-3495(92)81910-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thewalt J. L., Bloom M. Phosphatidylcholine: cholesterol phase diagrams. Biophys J. 1992 Oct;63(4):1176–1181. doi: 10.1016/S0006-3495(92)81681-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vilchèze C., McMullen T. P., McElhaney R. N., Bittman R. The effect of side-chain analogues of cholesterol on the thermotropic phase behavior of 1-stearoyl-2-oleoylphosphatidylcholine bilayers: a differential scanning calorimetric study. Biochim Biophys Acta. 1996 Mar 13;1279(2):235–242. doi: 10.1016/0005-2736(95)00258-8. [DOI] [PubMed] [Google Scholar]
  20. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
  21. Wachtel E. J., Bach D. X-ray diffraction study of cholesterol-phosphatidylserine mixtures. Biochim Biophys Acta. 1987 Nov 21;922(2):234–238. doi: 10.1016/0005-2760(87)90159-7. [DOI] [PubMed] [Google Scholar]
  22. Wachtel E. J., Borochov N., Bach D. The effect of protons or calcium ions on the phase behavior of phosphatidylserine-cholesterol mixtures. Biochim Biophys Acta. 1991 Jul 1;1066(1):63–69. doi: 10.1016/0005-2736(91)90251-3. [DOI] [PubMed] [Google Scholar]
  23. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Biochemistry. 1992 Nov 24;31(46):11579–11588. doi: 10.1021/bi00161a042. [DOI] [PubMed] [Google Scholar]
  24. Zhang Y. P., Lewis R. N., Hodges R. S., McElhaney R. N. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Biophys J. 1995 Mar;68(3):847–857. doi: 10.1016/S0006-3495(95)80261-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Dijck P. W. Negatively charged phospholipids and their position in the cholesterol affinity sequence. Biochim Biophys Acta. 1979 Jul 19;555(1):89–101. doi: 10.1016/0005-2736(79)90074-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES