Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2084–2094. doi: 10.1016/S0006-3495(00)76456-3

Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction.

S Papadopoulos 1, K D Jürgens 1, G Gros 1
PMCID: PMC1301098  PMID: 11023912

Abstract

Sarcoplasmic protein diffusion was studied under different conditions, using microinjection in combination with microspectrophotometry. Six globular proteins with molecular masses between 12 and 3700 kDa, with diameters from 3 to 30 nm, were used for the experiments. Proteins were injected into single, intact skeletal muscle fibers taken from either soleus or extensor digitorum longus (edl) muscle of adult rats. No correlation was found between sarcomere spacing and the sarcoplasmic diffusion coefficient (D) for all proteins studied. D of the smaller proteins cytochrome c (diameter 3.1 nm), myoglobin (diameter 3.5 nm), and hemoglobin (diameter 5.5 nm) amounted to only approximately 1/10 of their value in water and was not increased by auxotonic fiber contractions. D for cytochrome c and myoglobin was significantly higher in fibers from edl (mainly type II fibers) compared to fibers from soleus (mainly type I fibers). Measurements of D for myoglobin at 37 degrees C in addition to 22 degrees C led to a Q(10) of 1.46 for this temperature range. For the larger proteins catalase (diameter 10.5 nm) and ferritin (diameter 12.2 nm), a decrease in D to approximately 1/20 and approximately 1/50 of that in water was observed, whereas no diffusive flux at all of earthworm hemoglobin (diameter 30 nm) along the fiber axis could be detected. We conclude that 1) sarcoplasmic protein diffusion is strongly impaired by the presence of the myofilamental lattice, which also gives rise to differences in diffusivity between different fiber types; 2) contractions do not cause significant convection in sarcoplasm and do not lead to increased diffusional transport; and 3) in addition to the steric hindrance that slows down the diffusion of smaller proteins, diffusion of large proteins is further hindered when their dimensions approach the interfilament distances. This molecular sieve property progressively reduces intracellular diffusion of proteins when the molecular diameter increases to more than approximately 10 nm.

Full Text

The Full Text of this article is available as a PDF (121.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrio-Dupont M., Foucault G., Vacher M., Devaux P. F., Cribier S. Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. Biophys J. 2000 Feb;78(2):901–907. doi: 10.1016/S0006-3495(00)76647-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashley C. C., Moisescu D. G., Rose R. M. Proceedings: Aequorin-light and tension responses from bundles of myofibrils following a sudden change in free calcium. J Physiol. 1974 Sep;241(2):104P–106P. [PubMed] [Google Scholar]
  3. Baylor S. M., Pape P. C. Measurement of myoglobin diffusivity in the myoplasm of frog skeletal muscle fibres. J Physiol. 1988 Dec;406:247–275. doi: 10.1113/jphysiol.1988.sp017379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bentley T. B., Meng H., Pittman R. N. Temperature dependence of oxygen diffusion and consumption in mammalian striated muscle. Am J Physiol. 1993 Jun;264(6 Pt 2):H1825–H1830. doi: 10.1152/ajpheart.1993.264.6.H1825. [DOI] [PubMed] [Google Scholar]
  5. Blinks J. R., Rüdel R., Taylor S. R. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol. 1978 Apr;277:291–323. doi: 10.1113/jphysiol.1978.sp012273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blum J. J., Lawler G., Reed M., Shin I. Effect of cytoskeletal geometry on intracellular diffusion. Biophys J. 1989 Nov;56(5):995–1005. doi: 10.1016/S0006-3495(89)82744-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caillé J. P., Hinke J. A. The volume available to diffusion in the muscle fiber. Can J Physiol Pharmacol. 1974 Aug;52(4):814–828. doi: 10.1139/y74-107. [DOI] [PubMed] [Google Scholar]
  8. Cleveland G. G., Chang D. C., Hazlewood C. F., Rorschach H. E. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water. Biophys J. 1976 Sep;16(9):1043–1053. doi: 10.1016/S0006-3495(76)85754-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davey D. F., Wong S. Y. Morphometric analysis of rat extensor digitorum longus and soleus muscles. Aust J Exp Biol Med Sci. 1980 Jun;58(3):213–230. doi: 10.1038/icb.1980.22. [DOI] [PubMed] [Google Scholar]
  10. Engel J., Fechner M., Sowerby A. J., Finch S. A., Stier A. Anisotropic propagation of Ca2+ waves in isolated cardiomyocytes. Biophys J. 1994 Jun;66(6):1756–1762. doi: 10.1016/S0006-3495(94)80997-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fushimi K., Verkman A. S. Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol. 1991 Feb;112(4):719–725. doi: 10.1083/jcb.112.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gayeski T. E., Honig C. R. Direct measurement of intracellular O2 gradients; role of convection and myoglobin. Adv Exp Med Biol. 1983;159:613–621. doi: 10.1007/978-1-4684-7790-0_54. [DOI] [PubMed] [Google Scholar]
  13. Geers C., Gros G. Effects of carbonic anhydrase inhibitors on contraction, intracellular pH and energy-rich phosphates of rat skeletal muscle. J Physiol. 1990 Apr;423:279–297. doi: 10.1113/jphysiol.1990.sp018022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gershon N. D., Porter K. R., Trus B. L. The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5030–5034. doi: 10.1073/pnas.82.15.5030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldstein M. A., Schroeter J. P., Michael L. H. Role of the Z band in the mechanical properties of the heart. FASEB J. 1991 May;5(8):2167–2174. doi: 10.1096/fasebj.5.8.2022313. [DOI] [PubMed] [Google Scholar]
  16. Gros G. Concentration dependence of the self-diffusion of human and Lumbricus terrestris hemoglobin. Biophys J. 1978 Jun;22(3):453–468. doi: 10.1016/S0006-3495(78)85499-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HASSELBACH W., SCHNEIDER G. Der L-Myosin- und Aktingehalt des Kaninchenmuskels. Biochem Z. 1951;321(6):462–475. [PubMed] [Google Scholar]
  18. Hou L., Lanni F., Luby-Phelps K. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm. Biophys J. 1990 Jul;58(1):31–43. doi: 10.1016/S0006-3495(90)82351-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hubley M. J., Rosanske R. C., Moerland T. S. Diffusion coefficients of ATP and creatine phosphate in isolated muscle: pulsed gradient 31P NMR of small biological samples. NMR Biomed. 1995 Apr;8(2):72–78. doi: 10.1002/nbm.1940080205. [DOI] [PubMed] [Google Scholar]
  20. Jacobson K., Wojcieszyn J. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6747–6751. doi: 10.1073/pnas.81.21.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jürgens K. D., Baumann R., Röbbel H. Ligand-linked changes of ultrasound absorption of hemoglobin. Eur J Biochem. 1980 Jan;103(2):331–338. doi: 10.1111/j.1432-1033.1980.tb04319.x. [DOI] [PubMed] [Google Scholar]
  22. Jürgens K. D., Peters T., Gros G. Diffusivity of myoglobin in intact skeletal muscle cells. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3829–3833. doi: 10.1073/pnas.91.9.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. KEILIN D., HARTREE E. F. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem J. 1951 Jun;49(1):88–104. doi: 10.1042/bj0490088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kelly D. E., Cahill M. A. Filamentous and matrix components of skeletal muscle Z-disks. Anat Rec. 1972 Apr;172(4):623–642. doi: 10.1002/ar.1091720403. [DOI] [PubMed] [Google Scholar]
  26. Kurganov B. I., Sugrobova N. P., Mil'man L. S. Supramolecular organization of glycolytic enzymes. J Theor Biol. 1985 Oct 21;116(4):509–526. doi: 10.1016/s0022-5193(85)80086-2. [DOI] [PubMed] [Google Scholar]
  27. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  28. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
  29. Livingston D. J., La Mar G. N., Brown W. D. Myoglobin diffusion in bovine heart muscle. Science. 1983 Apr 1;220(4592):71–73. doi: 10.1126/science.6828881. [DOI] [PubMed] [Google Scholar]
  30. Luby-Phelps K., Castle P. E., Taylor D. L., Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910–4913. doi: 10.1073/pnas.84.14.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Luby-Phelps K., Lanni F., Taylor D. L. The submicroscopic properties of cytoplasm as a determinant of cellular function. Annu Rev Biophys Biophys Chem. 1988;17:369–396. doi: 10.1146/annurev.bb.17.060188.002101. [DOI] [PubMed] [Google Scholar]
  32. Luby-Phelps K., Mujumdar S., Mujumdar R. B., Ernst L. A., Galbraith W., Waggoner A. S. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys J. 1993 Jul;65(1):236–242. doi: 10.1016/S0006-3495(93)81075-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maughan D., Lord C. Protein diffusivities in skinned frog skeletal muscle fibers. Adv Exp Med Biol. 1988;226:75–84. [PubMed] [Google Scholar]
  35. Moll W. The diffusion coefficient of myoglobin in muscle homogenate. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;299(3):247–251. doi: 10.1007/BF00362587. [DOI] [PubMed] [Google Scholar]
  36. Morel J. E. Discussion on the state of water in the myofilament lattice and other biological systems, based on the fact that the usual concepts of colloid stability can not explain the stability of the myofilament lattice. J Theor Biol. 1985 Feb 21;112(4):847–858. doi: 10.1016/s0022-5193(85)80066-7. [DOI] [PubMed] [Google Scholar]
  37. Nieuwenhuysen P., Clauwaert J. Physicochemical characterization of ribosomal particles from the eukaryote Artemia. J Biol Chem. 1981 Sep 25;256(18):9626–9632. [PubMed] [Google Scholar]
  38. Niitsu Y., Listowsky I. Mechanisms for the formation of ferritin oligomers. Biochemistry. 1973 Nov 6;12(23):4690–4695. doi: 10.1021/bi00747a023. [DOI] [PubMed] [Google Scholar]
  39. Ono T., Ono K., Mizukawa K., Ohta T., Tsuchiya T., Tsuda M. Limited diffusibility of gene products directed by a single nucleus in the cytoplasm of multinucleated myofibres. FEBS Lett. 1994 Jan 3;337(1):18–22. doi: 10.1016/0014-5793(94)80621-7. [DOI] [PubMed] [Google Scholar]
  40. Papadopoulos S., Jürgens K. D., Gros G. Diffusion of myoglobin in skeletal muscle cells--dependence on fibre type, contraction and temperature. Pflugers Arch. 1995 Aug;430(4):519–525. doi: 10.1007/BF00373888. [DOI] [PubMed] [Google Scholar]
  41. Pavlath G. K., Rich K., Webster S. G., Blau H. M. Localization of muscle gene products in nuclear domains. Nature. 1989 Feb 9;337(6207):570–573. doi: 10.1038/337570a0. [DOI] [PubMed] [Google Scholar]
  42. Popov S., Poo M. M. Diffusional transport of macromolecules in developing nerve processes. J Neurosci. 1992 Jan;12(1):77–85. doi: 10.1523/JNEUROSCI.12-01-00077.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. ROBINSON D. S. Changes in the protein composition of chick muscle during development. Biochem J. 1952 Dec;52(4):621–628. doi: 10.1042/bj0520621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Riveros-Moreno V., Wittenberg J. B. The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem. 1972 Feb 10;247(3):895–901. [PubMed] [Google Scholar]
  45. SAMEJIMA T., KAMATA M., SHIBATA K. Dissociation of bovine liver catalase at low pH. J Biochem. 1962 Mar;51:181–187. doi: 10.1093/oxfordjournals.jbchem.a127518. [DOI] [PubMed] [Google Scholar]
  46. SCHELER W., SCHOFFA G., JUNG F. Lichtabsorption und paramagnetische Suszeptibilität bei Derivaten des Pferde- und Chironomus-Methämoglobins sowie des Pferde-Metmyoglobins. Biochem Z. 1957;329(3):232–246. [PubMed] [Google Scholar]
  47. Shah A., Sahgal V. Morphometric studies of normal muscle mitochondria. J Submicrosc Cytol Pathol. 1991 Oct;23(4):635–642. [PubMed] [Google Scholar]
  48. Shlom J. M., Vinogradov S. N. A study of the subunit structure of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem. 1973 Nov 25;248(22):7904–7912. [PubMed] [Google Scholar]
  49. Sjöström M., Angquist K. A., Bylund A. C., Fridén J., Gustavsson L., Scherstén T. Morphometric analyses of human muscle fiber types. Muscle Nerve. 1982 Sep;5(7):538–553. doi: 10.1002/mus.880050708. [DOI] [PubMed] [Google Scholar]
  50. Stromer M. H. Immunocytochemistry of the muscle cell cytoskeleton. Microsc Res Tech. 1995 Jun 1;31(2):95–105. doi: 10.1002/jemt.1070310202. [DOI] [PubMed] [Google Scholar]
  51. Swaminathan R., Hoang C. P., Verkman A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997 Apr;72(4):1900–1907. doi: 10.1016/S0006-3495(97)78835-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Verkman A. S. Green fluorescent protein as a probe to study intracellular solute diffusion. Methods Enzymol. 1999;302:250–264. doi: 10.1016/s0076-6879(99)02024-8. [DOI] [PubMed] [Google Scholar]
  53. Verschoor A., Frank J. Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol. 1990 Aug 5;214(3):737–749. doi: 10.1016/0022-2836(90)90289-X. [DOI] [PubMed] [Google Scholar]
  54. Wang D., Kreutzer U., Chung Y., Jue T. Myoglobin and hemoglobin rotational diffusion in the cell. Biophys J. 1997 Nov;73(5):2764–2770. doi: 10.1016/S0006-3495(97)78305-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Waterman-Storer C. M. The cytoskeleton of skeletal muscle: is it affected by exercise? A brief review. Med Sci Sports Exerc. 1991 Nov;23(11):1240–1249. [PubMed] [Google Scholar]
  56. Wegmann G., Zanolla E., Eppenberger H. M., Wallimann T. In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J Muscle Res Cell Motil. 1992 Aug;13(4):420–435. doi: 10.1007/BF01738037. [DOI] [PubMed] [Google Scholar]
  57. Yoshizaki K., Seo Y., Nishikawa H., Morimoto T. Application of pulsed-gradient 31P NMR on frog muscle to measure the diffusion rates of phosphorus compounds in cells. Biophys J. 1982 May;38(2):209–211. doi: 10.1016/S0006-3495(82)84549-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. van Ekeren G. J., Sengers R. C., Stadhouders A. M. Changes in volume densities and distribution of mitochondria in rat skeletal muscle after chronic hypoxia. Int J Exp Pathol. 1992 Feb;73(1):51–60. [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES