Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2095–2104. doi: 10.1016/S0006-3495(00)76457-5

Actinomycin D binds strongly to d(CGACGACG) and d(CGTCGTCG).

F Sha 1, F M Chen 1
PMCID: PMC1301099  PMID: 11023913

Abstract

Earlier calorimetric studies had indicated that despite the absence of a GpC sequence, the self-complementary octamer d(CGTCGACG) binds strongly to actinomycin D (ACTD) with high cooperativity and a 2:1 drug/duplex ratio. A subsequent optical spectral study with related oligomers led us to suggest that ACTD may likely stack at the G. C basepairs of the duplex termini. New findings are reported herein to indicate that despite the lack of complete self-complementarity, oligomers of d(CGXCGXCG) [X = A or T] motif exhibit unusually strong ACTD affinities with binding constants of roughly 2 x 10(7) M(-1) and binding densities of 1 drug molecule per strand. The ACTD binding affinity for the corresponding heteroduplex obtained by annealing these two oligomers is, however, considerably reduced. Although spectroscopic results with related oligomers obtained by removing, replacing, or appending bases at the termini appear to be consistent with the end-stacking model, capillary electrophoretic (CE) evidence provides additional insights into the binding mode. CE experiments with the self-complementary oligomers d(CGAGCTCG) and d(CGTCGACG) revealed contrasting migration patterns in the presence of ACTD, with mobility retardation and acceleration exhibited by the GpC- and non-GpC-containing octamers, respectively, whereas the X/X-mismatched d(CGXCGXCG) experienced retardation. These results, along with those of related oligomers, suggest that ACTD may in fact stack at the duplex stem end of a monomeric hairpin or at the 3'-end of dG as a single strand. The seemingly cooperative ACTD binding and the curved Scatchard plot for the self-complementary d(CGTCGACG) may thus be attributed to the drug-induced duplex denaturation resulting from strong binding to single strands of d(CGXCGYCG) motif. Detailed structural information on the ACTD-DNA complexes, however, must await further NMR investigations.

Full Text

The Full Text of this article is available as a PDF (119.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey S. A., Graves D. E., Rill R. Binding of actinomycin D to the T(G)nT motif of double-stranded DNA: determination of the guanine requirement in nonclassical, non-GpC binding sites. Biochemistry. 1994 Sep 27;33(38):11493–11500. doi: 10.1021/bi00204a011. [DOI] [PubMed] [Google Scholar]
  2. Chen F. M. Binding specificities of actinomycin D to non-self-complementary -XGCY-tetranucleotide sequences. Biochemistry. 1992 Jul 14;31(27):6223–6228. doi: 10.1021/bi00142a008. [DOI] [PubMed] [Google Scholar]
  3. Chen F. M. Binding specificities of actinomycin D to self-complementary tetranucleotide sequences -XGCY-. Biochemistry. 1988 Aug 23;27(17):6393–6397. doi: 10.1021/bi00417a030. [DOI] [PubMed] [Google Scholar]
  4. Chen F. M., Liu C. Is the strong actinomycin D binding of d(5'CGTCGACG3') the consequence of end-stacking? Biochemistry. 1996 Jun 4;35(22):7283–7291. doi: 10.1021/bi952907t. [DOI] [PubMed] [Google Scholar]
  5. Farber S. Chemotherapy in the treatment of leukemia and Wilms' tumor. JAMA. 1966 Nov 21;198(8):826–836. [PubMed] [Google Scholar]
  6. Goodisman J., Rehfuss R., Ward B., Dabrowiak J. C. Site-specific binding constants for actinomycin D on DNA determined from footprinting studies. Biochemistry. 1992 Feb 4;31(4):1046–1058. doi: 10.1021/bi00119a013. [DOI] [PubMed] [Google Scholar]
  7. Homer R. B. The circular dichroism of actinomycin D and its complexes with DNA and dGMP5'. Arch Biochem Biophys. 1969 Jan;129(1):405–407. doi: 10.1016/0003-9861(69)90193-3. [DOI] [PubMed] [Google Scholar]
  8. Hsieh Y. L., Li Y. T., Henion J. D., Ganem B. Studies of non-covalent interactions of actinomycin D with single-stranded oligodeoxynucleotides by ion spray mass spectrometry and tandem mass spectrometry. Biol Mass Spectrom. 1994 May;23(5):272–276. doi: 10.1002/bms.1200230506. [DOI] [PubMed] [Google Scholar]
  9. Kamitori S., Takusagawa F. Crystal structure of the 2:1 complex between d(GAAGCTTC) and the anticancer drug actinomycin D. J Mol Biol. 1992 May 20;225(2):445–456. doi: 10.1016/0022-2836(92)90931-9. [DOI] [PubMed] [Google Scholar]
  10. Lewis J. L., Jr Chemotherapy of gestational choriocarcinoma. Cancer. 1972 Dec;30(6):1517–1521. doi: 10.1002/1097-0142(197212)30:6<1517::aid-cncr2820300616>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  11. Marina N., Fontanesi J., Kun L., Rao B., Jenkins J. J., Thompson E. I., Etcubanas E. Treatment of childhood germ cell tumors. Review of the St. Jude experience from 1979 to 1988. Cancer. 1992 Nov 15;70(10):2568–2575. doi: 10.1002/1097-0142(19921115)70:10<2568::aid-cncr2820701028>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  12. Nakamura E., Kaneko Y., Takenawa J., Sasaki M. [Comparative study of risk criteria for germ cell tumor]. Hinyokika Kiyo. 1992 Aug;38(8):913–918. [PubMed] [Google Scholar]
  13. Newlands E. S., Bagshawe K. D., Begent R. H., Rustin G. J., Holden L. Results with the EMA/CO (etoposide, methotrexate, actinomycin D, cyclophosphamide, vincristine) regimen in high risk gestational trophoblastic tumours, 1979 to 1989. Br J Obstet Gynaecol. 1991 Jun;98(6):550–557. doi: 10.1111/j.1471-0528.1991.tb10369.x. [DOI] [PubMed] [Google Scholar]
  14. Rill R. L., Hecker K. H. Sequence-specific actinomycin D binding to single-stranded DNA inhibits HIV reverse transcriptase and other polymerases. Biochemistry. 1996 Mar 19;35(11):3525–3533. doi: 10.1021/bi9530797. [DOI] [PubMed] [Google Scholar]
  15. Rill R. L., Marsch G. A., Graves D. E. 7-Azido-actinomycin D: a photoaffinity probe of the sequence specificity of DNA binding by actinomycin D. J Biomol Struct Dyn. 1989 Dec;7(3):591–605. doi: 10.1080/07391102.1989.10508509. [DOI] [PubMed] [Google Scholar]
  16. Schink J. C., Singh D. K., Rademaker A. W., Miller D. S., Lurain J. R. Etoposide, methotrexate, actinomycin D, cyclophosphamide, and vincristine for the treatment of metastatic, high-risk gestational trophoblastic disease. Obstet Gynecol. 1992 Nov;80(5):817–820. [PubMed] [Google Scholar]
  17. Snyder J. G., Hartman N. G., D'Estantoit B. L., Kennard O., Remeta D. P., Breslauer K. J. Binding of actinomycin D to DNA: evidence for a nonclassical high-affinity binding mode that does not require GpC sites. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3968–3972. doi: 10.1073/pnas.86.11.3968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sobell H. M., Jain S. C., Sakore T. D., Nordman C. E. Stereochemistry of actinomycin--DNA binding. Nat New Biol. 1971 Jun 16;231(24):200–205. doi: 10.1038/newbio231200a0. [DOI] [PubMed] [Google Scholar]
  19. Sobell H. M., Jain S. C. Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol. 1972 Jul 14;68(1):21–34. doi: 10.1016/0022-2836(72)90259-8. [DOI] [PubMed] [Google Scholar]
  20. Wadkins R. M., Jares-Erijman E. A., Klement R., Rüdiger A., Jovin T. M. Actinomycin D binding to single-stranded DNA: sequence specificity and hemi-intercalation model from fluorescence and 1H NMR spectroscopy. J Mol Biol. 1996 Sep 13;262(1):53–68. doi: 10.1006/jmbi.1996.0498. [DOI] [PubMed] [Google Scholar]
  21. Wadkins R. M., Jovin T. M. Actinomycin D and 7-aminoactinomycin D binding to single-stranded DNA. Biochemistry. 1991 Oct 1;30(39):9469–9478. doi: 10.1021/bi00103a012. [DOI] [PubMed] [Google Scholar]
  22. Wadkins R. M., Vladu B., Tung C. S. Actinomycin D binds to metastable hairpins in single-stranded DNA. Biochemistry. 1998 Aug 25;37(34):11915–11923. doi: 10.1021/bi9809730. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES