Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2105–2120. doi: 10.1016/S0006-3495(00)76458-7

Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum.

V I Prokhorenko 1, D B Steensgaard 1, A R Holzwarth 1
PMCID: PMC1301100  PMID: 11023914

Abstract

The energy transfer processes in isolated chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus have been studied at low temperatures (1.27 K) by two-pulse photon echo and one-color transient absorption techniques with approximately 100 fs resolution. The decay of the coherence in both types of chlorosomes is characterized by four different dephasing times stretching from approximately 100 fs up to 300 ps. The fastest component reflects dephasing that is due to interaction of bacteriochlorophylls with the phonon bath, whereas the other components correspond to dephasing due to different energy transfer processes such as distribution of excitation along the rod-like aggregates, energy exchange between different rods in the chlorosome, and energy transfer to the base plate. As a basis for the interpretation of the excitation dephasing and energy transfer pathways, a superlattice-like structural model is proposed based on recent experimental data and computer modeling of the Bchl c aggregates (1994. Photosynth. Res. 41:225-233.) This model predicts a fine structure of the Q(y) absorption band that is fully supported by the present photon echo data.

Full Text

The Full Text of this article is available as a PDF (251.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaban T. S., Holzwarth A. R., Schaffner K., Boender G. J., de Groot H. J. CP-MAS 13C-NMR dipolar correlation spectroscopy of 13C-enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: the self-organization of pigments is the main structural feature of chlorosomes. Biochemistry. 1995 Nov 21;34(46):15259–15266. doi: 10.1021/bi00046a034. [DOI] [PubMed] [Google Scholar]
  2. Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
  3. Cao E. H., Liu X. Q., Wang L. G., Wang J. J., Xu N. F. Evidence that lipid peroxidation products bind to DNA in liver cells. Biochim Biophys Acta. 1995 Nov 16;1259(2):187–191. doi: 10.1016/0005-2760(95)00162-6. [DOI] [PubMed] [Google Scholar]
  4. Fetisova Z. G., Mauring K. Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. FEBS Lett. 1992 Aug 3;307(3):371–374. doi: 10.1016/0014-5793(92)80715-s. [DOI] [PubMed] [Google Scholar]
  5. Fetisova Z. G., Mauring K. Spectral hole burning study of intact cells of green bacterium Chlorobium limicola. FEBS Lett. 1993 May 24;323(1-2):159–162. doi: 10.1016/0014-5793(93)81470-k. [DOI] [PubMed] [Google Scholar]
  6. Fetisova Z., Freiberg A., Mauring K., Novoderezhkin V., Taisova A., Timpmann K. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J. 1996 Aug;71(2):995–1010. doi: 10.1016/S0006-3495(96)79301-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Müller M. G., Griebenow K., Holzwarth A. R. Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus. Biochim Biophys Acta. 1993 Sep 13;1144(2):161–169. doi: 10.1016/0005-2728(93)90168-f. [DOI] [PubMed] [Google Scholar]
  8. Novoderezhkin V. I., Fetisova Z. G. Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: a spectral hole burning study. Biochem Mol Biol Int. 1996 Oct;40(2):243–252. doi: 10.1080/15216549600201732. [DOI] [PubMed] [Google Scholar]
  9. STANIER R. Y., SMITH J. H. The chlorophylis of green bacteria. Biochim Biophys Acta. 1960 Jul 15;41:478–484. doi: 10.1016/0006-3002(60)90045-7. [DOI] [PubMed] [Google Scholar]
  10. Savikhin S., Buck D. R., Struve W. S., Blankenship R. E., Taisova A. S., Novoderezhkin V. I., Fetisova Z. G. Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. FEBS Lett. 1998 Jul 3;430(3):323–326. doi: 10.1016/s0014-5793(98)00691-7. [DOI] [PubMed] [Google Scholar]
  11. Savikhin S., Zhu Y., Blankenship R. E., Struve W. S. Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem. 1996 Feb 29;100(9):3320–3322. doi: 10.1021/jp953734k. [DOI] [PubMed] [Google Scholar]
  12. Savikhin S., van Noort P. I., Blankenship R. E., Struve W. S. Femtosecond probe of structural analogies between chlorosomes and bacteriochlorophyll c aggregates. Biophys J. 1995 Sep;69(3):1100–1104. doi: 10.1016/S0006-3495(95)79983-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Savikhin S., van Noort P. I., Zhu Y., Lin S., Blankenship R. E., Struve W. S. Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum. Chem Phys. 1995 May 15;194(2-3):245–258. doi: 10.1016/0301-0104(95)00019-k. [DOI] [PubMed] [Google Scholar]
  14. Staehelin L. A., Golecki J. R., Drews G. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta. 1980 Jan 4;589(1):30–45. doi: 10.1016/0005-2728(80)90130-9. [DOI] [PubMed] [Google Scholar]
  15. Steensgaard D. B., van Walree C. A., Permentier H., Bañeras L., Borrego C. M., Garcia-Gil J., Aartsma T. J., Amesz J., Holzwarth A. R. Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta. 2000 Feb 24;1457(1-2):71–80. doi: 10.1016/s0005-2728(99)00112-7. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES