Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2132–2137. doi: 10.1016/S0006-3495(00)76460-5

Early intermediates in the photocycle of the Glu46Gln mutant of photoactive yellow protein: femtosecond spectroscopy.

S Devanathan 1, S Lin 1, M A Cusanovich 1, N Woodbury 1, G Tollin 1
PMCID: PMC1301102  PMID: 11023916

Abstract

Transient absorption spectroscopy in the time range from -1 ps to 4 ns, and over the wavelength range from 420 to 550 nm, was applied to the Glu46Gln mutant of the photoactive yellow protein (PYP) from Ectothiorhodospira halophila. This has allowed us to elucidate the kinetic constants of excited state formation and decay and photochemical product formation, and the spectral characteristics of stimulated emission and the early photocycle intermediates. Both the quantum efficiency ( approximately 0.5) and the rate constants for excited state decay and the formation of the initial photochemical intermediate (I(0)) were found to be quite similar to those obtained for wild-type PYP. In contrast, the rate constants for the formation of the subsequent photocycle intermediates (I(0)(double dagger) and I(1)), as well as for I(2) and for ground state regeneration as determined in earlier studies, were found to be from 3- to 30-fold larger. The structural implications of these results are discussed.

Full Text

The Full Text of this article is available as a PDF (109.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baca M., Borgstahl G. E., Boissinot M., Burke P. M., Williams D. R., Slater K. A., Getzoff E. D. Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry. Biochemistry. 1994 Dec 6;33(48):14369–14377. doi: 10.1021/bi00252a001. [DOI] [PubMed] [Google Scholar]
  2. Borgstahl G. E., Williams D. R., Getzoff E. D. 1.4 A structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore. Biochemistry. 1995 May 16;34(19):6278–6287. doi: 10.1021/bi00019a004. [DOI] [PubMed] [Google Scholar]
  3. Devanathan S., Pacheco A., Ujj L., Cusanovich M., Tollin G., Lin S., Woodbury N. Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1999 Aug;77(2):1017–1023. doi: 10.1016/S0006-3495(99)76952-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Genick U. K., Devanathan S., Meyer T. E., Canestrelli I. L., Williams E., Cusanovich M. A., Tollin G., Getzoff E. D. Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein. Biochemistry. 1997 Jan 7;36(1):8–14. doi: 10.1021/bi9622884. [DOI] [PubMed] [Google Scholar]
  5. Genick U. K., Soltis S. M., Kuhn P., Canestrelli I. L., Getzoff E. D. Structure at 0.85 A resolution of an early protein photocycle intermediate. Nature. 1998 Mar 12;392(6672):206–209. doi: 10.1038/32462. [DOI] [PubMed] [Google Scholar]
  6. Hoff W. D., Düx P., Hård K., Devreese B., Nugteren-Roodzant I. M., Crielaard W., Boelens R., Kaptein R., van Beeumen J., Hellingwerf K. J. Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry. Biochemistry. 1994 Nov 29;33(47):13959–13962. doi: 10.1021/bi00251a001. [DOI] [PubMed] [Google Scholar]
  7. Hoff W. D., van Stokkum I. H., van Ramesdonk H. J., van Brederode M. E., Brouwer A. M., Fitch J. C., Meyer T. E., van Grondelle R., Hellingwerf K. J. Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1994 Oct;67(4):1691–1705. doi: 10.1016/S0006-3495(94)80643-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jiang Z., Swem L. R., Rushing B. G., Devanathan S., Tollin G., Bauer C. E. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science. 1999 Jul 16;285(5426):406–409. doi: 10.1126/science.285.5426.406. [DOI] [PubMed] [Google Scholar]
  9. Meyer T. E. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim Biophys Acta. 1985 Jan 23;806(1):175–183. doi: 10.1016/0005-2728(85)90094-5. [DOI] [PubMed] [Google Scholar]
  10. Meyer T. E., Tollin G., Causgrove T. P., Cheng P., Blankenship R. E. Picosecond decay kinetics and quantum yield of fluorescence of the photoactive yellow protein from the halophilic purple phototrophic bacterium, Ectothiorhodospira halophila. Biophys J. 1991 May;59(5):988–991. doi: 10.1016/S0006-3495(91)82313-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyer T. E., Tollin G., Hazzard J. H., Cusanovich M. A. Photoactive yellow protein from the purple phototrophic bacterium, Ectothiorhodospira halophila. Quantum yield of photobleaching and effects of temperature, alcohols, glycerol, and sucrose on kinetics of photobleaching and recovery. Biophys J. 1989 Sep;56(3):559–564. doi: 10.1016/S0006-3495(89)82703-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer T. E., Yakali E., Cusanovich M. A., Tollin G. Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin. Biochemistry. 1987 Jan 27;26(2):418–423. doi: 10.1021/bi00376a012. [DOI] [PubMed] [Google Scholar]
  13. Mihara K., Hisatomi O., Imamoto Y., Kataoka M., Tokunaga F. Functional expression and site-directed mutagenesis of photoactive yellow protein. J Biochem. 1997 May;121(5):876–880. doi: 10.1093/oxfordjournals.jbchem.a021668. [DOI] [PubMed] [Google Scholar]
  14. Perman B., Srajer V., Ren Z., Teng T., Pradervand C., Ursby T., Bourgeois D., Schotte F., Wulff M., Kort R. Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle. Science. 1998 Mar 20;279(5358):1946–1950. doi: 10.1126/science.279.5358.1946. [DOI] [PubMed] [Google Scholar]
  15. Sprenger W. W., Hoff W. D., Armitage J. P., Hellingwerf K. J. The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J Bacteriol. 1993 May;175(10):3096–3104. doi: 10.1128/jb.175.10.3096-3104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ujj L., Devanathan S., Meyer T. E., Cusanovich M. A., Tollin G., Atkinson G. H. New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy. Biophys J. 1998 Jul;75(1):406–412. doi: 10.1016/S0006-3495(98)77525-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Xie A., Hoff W. D., Kroon A. R., Hellingwerf K. J. Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein. Biochemistry. 1996 Nov 26;35(47):14671–14678. doi: 10.1021/bi9623035. [DOI] [PubMed] [Google Scholar]
  18. van Brederode M. E., Gensch T., Hoff W. D., Hellingwerf K. J., Braslavsky S. E. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. Biophys J. 1995 Mar;68(3):1101–1109. doi: 10.1016/S0006-3495(95)80284-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES