Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Oct;79(4):2171–2177. doi: 10.1016/S0006-3495(00)76465-4

Cation-binding sites of subtilisin Carlsberg probed with Eu(III) luminescence.

S Lee 1, D J Jang 1
PMCID: PMC1301107  PMID: 11023921

Abstract

Two Ca(2+)-binding sites of subtilisin Carlsberg are studied by monitoring static and time-resolved luminescence of selectively substituted Eu(3+) at each site, and they are found to be characteristically quite different from each other. Compared with the coordination sphere of free Eu(3+), two sites are very similar to each other, so that both have a well-defined binding structure with low coordination symmetry. However, compared with the weak site, the strong site is relatively more polar, more symmetrical, and more easily accessible. Furthermore, despite the absence of water reported in the x-ray crystal structure (, Eur. J. Biochem. 166:673-692), one water molecule is found to exist in the coordination sphere of the strong site in aqueous solution. Thus it is suggested that in solution the Ca(2+) bound in the strong site forms an additional coordination bond to a solvent or substrate molecule.

Full Text

The Full Text of this article is available as a PDF (94.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode W., Papamokos E., Musil D. The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur J Biochem. 1987 Aug 3;166(3):673–692. doi: 10.1111/j.1432-1033.1987.tb13566.x. [DOI] [PubMed] [Google Scholar]
  2. Capobianco JA, Proulx PP, Bettinelli M, Negrisolo F. Absorption and emission spectroscopy of Eu3+ in metaphosphate glasses. Phys Rev B Condens Matter. 1990 Oct 1;42(10):5936–5944. doi: 10.1103/physrevb.42.5936. [DOI] [PubMed] [Google Scholar]
  3. Carter P., Wells J. A. Dissecting the catalytic triad of a serine protease. Nature. 1988 Apr 7;332(6164):564–568. doi: 10.1038/332564a0. [DOI] [PubMed] [Google Scholar]
  4. Fitzpatrick P. A., Ringe D., Klibanov A. M. X-ray crystal structure of cross-linked subtilisin Carlsberg in water vs. acetonitrile. Biochem Biophys Res Commun. 1994 Jan 28;198(2):675–681. doi: 10.1006/bbrc.1994.1098. [DOI] [PubMed] [Google Scholar]
  5. Genov N., Filippi B., Dolashka P., Wilson K. S., Betzel C. Stability of subtilisins and related proteinases (subtilases). Int J Pept Protein Res. 1995 Apr;45(4):391–400. doi: 10.1111/j.1399-3011.1995.tb01054.x. [DOI] [PubMed] [Google Scholar]
  6. McPhalen C. A., James M. N. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo. Biochemistry. 1988 Aug 23;27(17):6582–6598. [PubMed] [Google Scholar]
  7. Neidhart D. J., Petsko G. A. The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution. Protein Eng. 1988 Oct;2(4):271–276. doi: 10.1093/protein/2.4.271. [DOI] [PubMed] [Google Scholar]
  8. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  9. Pantoliano M. W., Whitlow M., Wood J. F., Rollence M. L., Finzel B. C., Gilliland G. L., Poulos T. L., Bryan P. N. The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Biochemistry. 1988 Nov 1;27(22):8311–8317. doi: 10.1021/bi00422a004. [DOI] [PubMed] [Google Scholar]
  10. Pucker G, Gatterer K, Fritzer HP, Bettinelli M, Ferrari M. Optical investigation of Eu3+ in a sodium borosilicate glass: Evidence for two different site distributions. Phys Rev B Condens Matter. 1996 Mar 1;53(10):6225–6234. doi: 10.1103/physrevb.53.6225. [DOI] [PubMed] [Google Scholar]
  11. Siezen R. J., de Vos W. M., Leunissen J. A., Dijkstra B. W. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 1991 Oct;4(7):719–737. doi: 10.1093/protein/4.7.719. [DOI] [PubMed] [Google Scholar]
  12. Smith E. L., DeLange R. J., Evans W. H., Landon M., Markland F. S. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J Biol Chem. 1968 May 10;243(9):2184–2191. [PubMed] [Google Scholar]
  13. Strausberg S. L., Alexander P. A., Gallagher D. T., Gilliland G. L., Barnett B. L., Bryan P. N. Directed evolution of a subtilisin with calcium-independent stability. Biotechnology (N Y) 1995 Jul;13(7):669–673. doi: 10.1038/nbt0795-669. [DOI] [PubMed] [Google Scholar]
  14. Strausberg S., Alexander P., Wang L., Gallagher T., Gilliland G., Bryan P. An engineered disulfide cross-link accelerates the refolding rate of calcium-free subtilisin by 850-fold. Biochemistry. 1993 Oct 5;32(39):10371–10377. doi: 10.1021/bi00090a012. [DOI] [PubMed] [Google Scholar]
  15. Voordouw G., Milo C., Roche R. S. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976 Aug 24;15(17):3716–3724. doi: 10.1021/bi00662a012. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES