Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2211–2221. doi: 10.1016/S0006-3495(00)76469-1

Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system.

A M Zhabotinsky 1
PMCID: PMC1301111  PMID: 11053103

Abstract

A mathematical model is presented of autophosphorylation of Ca(2+)/calmodulin-dependent protein kinase (CaMKII) and its dephosphorylation by a phosphatase. If the total concentration of CaMKII subunits is significantly higher than the phosphatase Michaelis constant, two stable steady states of the CaMKII autophosphorylation can exist in a Ca(2+) concentration range from below the resting value of the intracellular [Ca(2+)] to the threshold concentration for induction of long-term potentiation (LTP). Bistability is a robust phenomenon, it occurs over a wide range of parameters of the model. Ca(2+) transients that switch CaMKII from the low-phosphorylated state to the high-phosphorylated one are in the same range of amplitudes and frequencies as the Ca(2+) transients that induce LTP. These results show that the CaMKII-phosphatase bistability may play an important role in long-term synaptic modifications. They also suggest a plausible explanation for the very high concentrations of CaMKII found in postsynaptic densities of cerebral neurons.

Full Text

The Full Text of this article is available as a PDF (222.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barria A., Muller D., Derkach V., Griffith L. C., Soderling T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997 Jun 27;276(5321):2042–2045. doi: 10.1126/science.276.5321.2042. [DOI] [PubMed] [Google Scholar]
  2. Bear M. F. A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13453–13459. doi: 10.1073/pnas.93.24.13453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bear M. F., Malenka R. C. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994 Jun;4(3):389–399. doi: 10.1016/0959-4388(94)90101-5. [DOI] [PubMed] [Google Scholar]
  4. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31–39. doi: 10.1038/361031a0. [DOI] [PubMed] [Google Scholar]
  6. Braun A. P., Schulman H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol. 1995;57:417–445. doi: 10.1146/annurev.ph.57.030195.002221. [DOI] [PubMed] [Google Scholar]
  7. Coomber C. J. Site-selective autophosphorylation of Ca2+/calmodulin-dependent protein kinase II as a synaptic encoding mechanism. Neural Comput. 1998 Oct 1;10(7):1653–1678. doi: 10.1162/089976698300017070. [DOI] [PubMed] [Google Scholar]
  8. De Koninck P., Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998 Jan 9;279(5348):227–230. doi: 10.1126/science.279.5348.227. [DOI] [PubMed] [Google Scholar]
  9. Dosemeci A., Albers R. W. A mechanism for synaptic frequency detection through autophosphorylation of CaM kinase II. Biophys J. 1996 Jun;70(6):2493–2501. doi: 10.1016/S0006-3495(96)79821-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Endo S., Zhou X., Connor J., Wang B., Shenolikar S. Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry. 1996 Apr 23;35(16):5220–5228. doi: 10.1021/bi952940f. [DOI] [PubMed] [Google Scholar]
  11. Erondu N. E., Kennedy M. B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985 Dec;5(12):3270–3277. doi: 10.1523/JNEUROSCI.05-12-03270.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukunaga K., Muller D., Miyamoto E. Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. J Biol Chem. 1995 Mar 17;270(11):6119–6124. doi: 10.1074/jbc.270.11.6119. [DOI] [PubMed] [Google Scholar]
  13. Fukunaga K., Muller D., Ohmitsu M., Bakó E., DePaoli-Roach A. A., Miyamoto E. Decreased protein phosphatase 2A activity in hippocampal long-term potentiation. J Neurochem. 2000 Feb;74(2):807–817. doi: 10.1046/j.1471-4159.2000.740807.x. [DOI] [PubMed] [Google Scholar]
  14. Fukunaga K., Stoppini L., Miyamoto E., Muller D. Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1993 Apr 15;268(11):7863–7867. [PubMed] [Google Scholar]
  15. Fährmann M., Möhlig M., Schatz H., Pfeiffer A. Purification and characterization of a Ca2+/calmodulin-dependent protein kinase II from hog gastric mucosa using a protein-protein affinity chromatographic technique. Eur J Biochem. 1998 Jul 15;255(2):516–525. doi: 10.1046/j.1432-1327.1998.2550516.x. [DOI] [PubMed] [Google Scholar]
  16. Gardoni F., Schrama L. H., van Dalen J. J., Gispen W. H., Cattabeni F., Di Luca M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett. 1999 Aug 13;456(3):394–398. doi: 10.1016/s0014-5793(99)00985-0. [DOI] [PubMed] [Google Scholar]
  17. Giese K. P., Fedorov N. B., Filipkowski R. K., Silva A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science. 1998 Feb 6;279(5352):870–873. doi: 10.1126/science.279.5352.870. [DOI] [PubMed] [Google Scholar]
  18. Gupta R. P., Lapadula D. M., Abou-Donia M. B. Ca2+/calmodulin-dependent protein kinase II from hen brain. Purification and characterization. Biochem Pharmacol. 1992 May 8;43(9):1975–1988. doi: 10.1016/0006-2952(92)90641-u. [DOI] [PubMed] [Google Scholar]
  19. Hanson P. I., Meyer T., Stryer L., Schulman H. Dual role of calmodulin in autophosphorylation of multifunctional CaM kinase may underlie decoding of calcium signals. Neuron. 1994 May;12(5):943–956. doi: 10.1016/0896-6273(94)90306-9. [DOI] [PubMed] [Google Scholar]
  20. Hanson P. I., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem. 1992;61:559–601. doi: 10.1146/annurev.bi.61.070192.003015. [DOI] [PubMed] [Google Scholar]
  21. Harris K. M., Kater S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci. 1994;17:341–371. doi: 10.1146/annurev.ne.17.030194.002013. [DOI] [PubMed] [Google Scholar]
  22. Helmchen F., Imoto K., Sakmann B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J. 1996 Feb;70(2):1069–1081. doi: 10.1016/S0006-3495(96)79653-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang C. Y., Chau V., Chock P. B., Wang J. H., Sharma R. K. Mechanism of activation of cyclic nucleotide phosphodiesterase: requirement of the binding of four Ca2+ to calmodulin for activation. Proc Natl Acad Sci U S A. 1981 Feb;78(2):871–874. doi: 10.1073/pnas.78.2.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huang Y. Y., Nguyen P. V., Abel T., Kandel E. R. Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn Mem. 1996 Sep-Oct;3(2-3):74–85. doi: 10.1101/lm.3.2-3.74. [DOI] [PubMed] [Google Scholar]
  25. Ishida A., Kameshita I., Fujisawa H. A novel protein phosphatase that dephosphorylates and regulates Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1998 Jan 23;273(4):1904–1910. doi: 10.1074/jbc.273.4.1904. [DOI] [PubMed] [Google Scholar]
  26. Johansen J. W., Ingebritsen T. S. Effects of phosphorylation of protein phosphatase 1 by pp60v-src on the interaction of the enzyme with substrates and inhibitor proteins. Biochim Biophys Acta. 1987 Apr 2;928(1):63–75. doi: 10.1016/0167-4889(87)90086-3. [DOI] [PubMed] [Google Scholar]
  27. Kennedy M. B., McGuinness T., Greengard P. A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization. J Neurosci. 1983 Apr;3(4):818–831. doi: 10.1523/JNEUROSCI.03-04-00818.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kennedy M. B. Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res Brain Res Rev. 1998 May;26(2-3):243–257. doi: 10.1016/s0165-0173(97)00043-x. [DOI] [PubMed] [Google Scholar]
  29. Kitani T., Ishida A., Okuno S., Takeuchi M., Kameshita I., Fujisawa H. Molecular cloning of Ca2+/calmodulin-dependent protein kinase phosphatase. J Biochem. 1999 Jun;125(6):1022–1028. doi: 10.1093/oxfordjournals.jbchem.a022381. [DOI] [PubMed] [Google Scholar]
  30. Kuret J., Schulman H. Purification and characterization of a Ca2+/calmodulin-dependent protein kinase from rat brain. Biochemistry. 1984 Nov 6;23(23):5495–5504. doi: 10.1021/bi00318a018. [DOI] [PubMed] [Google Scholar]
  31. Leonard A. S., Lim I. A., Hemsworth D. E., Horne M. C., Hell J. W. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3239–3244. doi: 10.1073/pnas.96.6.3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Linden D. J. Long-term synaptic depression in the mammalian brain. Neuron. 1994 Mar;12(3):457–472. doi: 10.1016/0896-6273(94)90205-4. [DOI] [PubMed] [Google Scholar]
  33. Lisman J. E. A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci U S A. 1985 May;82(9):3055–3057. doi: 10.1073/pnas.82.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lisman J. E., Goldring M. A. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5320–5324. doi: 10.1073/pnas.85.14.5320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lisman J., Malenka R. C., Nicoll R. A., Malinow R. Learning mechanisms: the case for CaM-KII. Science. 1997 Jun 27;276(5321):2001–2002. doi: 10.1126/science.276.5321.2001. [DOI] [PubMed] [Google Scholar]
  36. Lisman J. The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci. 1994 Oct;17(10):406–412. doi: 10.1016/0166-2236(94)90014-0. [DOI] [PubMed] [Google Scholar]
  37. Magee J. C., Johnston D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science. 1997 Jan 10;275(5297):209–213. doi: 10.1126/science.275.5297.209. [DOI] [PubMed] [Google Scholar]
  38. Majewska A., Brown E., Ross J., Yuste R. Mechanisms of calcium decay kinetics in hippocampal spines: role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci. 2000 Mar 1;20(5):1722–1734. doi: 10.1523/JNEUROSCI.20-05-01722.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Malenka R. C., Nicoll R. A. Long-term potentiation--a decade of progress? Science. 1999 Sep 17;285(5435):1870–1874. doi: 10.1126/science.285.5435.1870. [DOI] [PubMed] [Google Scholar]
  40. Matsushita T., Moriyama S., Fukai T. Switching dynamics and the transient memory storage in a model enzyme network involving Ca2+/calmodulin-dependent protein kinase II in synapses. Biol Cybern. 1995;72(6):497–509. doi: 10.1007/BF00199892. [DOI] [PubMed] [Google Scholar]
  41. McNeill R. B., Colbran R. J. Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein. J Biol Chem. 1995 Apr 28;270(17):10043–10049. doi: 10.1074/jbc.270.17.10043. [DOI] [PubMed] [Google Scholar]
  42. Miller S. G., Kennedy M. B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell. 1986 Mar 28;44(6):861–870. doi: 10.1016/0092-8674(86)90008-5. [DOI] [PubMed] [Google Scholar]
  43. Mukherji S., Soderling T. R. Regulation of Ca2+/calmodulin-dependent protein kinase II by inter- and intrasubunit-catalyzed autophosphorylations. J Biol Chem. 1994 May 13;269(19):13744–13747. [PubMed] [Google Scholar]
  44. Mulkey R. M., Endo S., Shenolikar S., Malenka R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature. 1994 Jun 9;369(6480):486–488. doi: 10.1038/369486a0. [DOI] [PubMed] [Google Scholar]
  45. Noble D., Stein R. B. The threshold conditions for initiation of action potentials by excitable cells. J Physiol. 1966 Nov;187(1):129–162. doi: 10.1113/jphysiol.1966.sp008079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Okamoto H., Ichikawa K. Switching characteristics of a model for biochemical-reaction networks describing autophosphorylation versus dephosphorylation of Ca2+/calmodulin-dependent protein kinase II. Biol Cybern. 2000 Jan;82(1):35–47. doi: 10.1007/PL00007960. [DOI] [PubMed] [Google Scholar]
  47. Ouyang Y., Kantor D., Harris K. M., Schuman E. M., Kennedy M. B. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci. 1997 Jul 15;17(14):5416–5427. doi: 10.1523/JNEUROSCI.17-14-05416.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Petersen C. C., Malenka R. C., Nicoll R. A., Hopfield J. J. All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4732–4737. doi: 10.1073/pnas.95.8.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shen K., Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science. 1999 Apr 2;284(5411):162–166. doi: 10.1126/science.284.5411.162. [DOI] [PubMed] [Google Scholar]
  50. Shenolikar S., Nairn A. C. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1–121. [PubMed] [Google Scholar]
  51. Soderling T. R. Calcium-dependent protein kinases in learning and memory. Adv Second Messenger Phosphoprotein Res. 1995;30:175–189. doi: 10.1016/s1040-7952(05)80007-2. [DOI] [PubMed] [Google Scholar]
  52. Stemmer P. M., Klee C. B. Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry. 1994 Jun 7;33(22):6859–6866. doi: 10.1021/bi00188a015. [DOI] [PubMed] [Google Scholar]
  53. Strack S., Choi S., Lovinger D. M., Colbran R. J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J Biol Chem. 1997 May 23;272(21):13467–13470. doi: 10.1074/jbc.272.21.13467. [DOI] [PubMed] [Google Scholar]
  54. Strack S., Colbran R. J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J Biol Chem. 1998 Aug 14;273(33):20689–20692. doi: 10.1074/jbc.273.33.20689. [DOI] [PubMed] [Google Scholar]
  55. Suzuki T., Okumura-Noji K., Tanaka R., Tada T. Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation. J Neurochem. 1994 Oct;63(4):1529–1537. doi: 10.1046/j.1471-4159.1994.63041529.x. [DOI] [PubMed] [Google Scholar]
  56. Yang S. N., Tang Y. G., Zucker R. S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol. 1999 Feb;81(2):781–787. doi: 10.1152/jn.1999.81.2.781. [DOI] [PubMed] [Google Scholar]
  57. Yoshimura Y., Sogawa Y., Yamauchi T. Protein phosphatase 1 is involved in the dissociation of Ca2+/calmodulin-dependent protein kinase II from postsynaptic densities. FEBS Lett. 1999 Mar 12;446(2-3):239–242. doi: 10.1016/s0014-5793(99)00226-4. [DOI] [PubMed] [Google Scholar]
  58. Yuste R., Majewska A., Cash S. S., Denk W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci. 1999 Mar 15;19(6):1976–1987. doi: 10.1523/JNEUROSCI.19-06-01976.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhao W., Lawen A., Ng K. T. Changes in phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in processing of short-term and long-term memories after passive avoidance learning. J Neurosci Res. 1999 Mar 1;55(5):557–568. doi: 10.1002/(SICI)1097-4547(19990301)55:5<557::AID-JNR3>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  60. Ziff E. B. Enlightening the postsynaptic density. Neuron. 1997 Dec;19(6):1163–1174. doi: 10.1016/s0896-6273(00)80409-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES