Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2235–2251. doi: 10.1016/S0006-3495(00)76471-X

Models of post-translational protein translocation.

T C Elston 1
PMCID: PMC1301113  PMID: 11053105

Abstract

Organellar Hsp-70 is required for post-translational translocation into the endoplasmic reticulum and mitochondria. The functional role played by Hsp-70 is unknown. However, two operating principles have been suggested. The power stroke model proposes that Hsp-70 undergoes a conformational change, which pulls the precursor protein through the translocation pore, whereas, in the Brownian ratchet model, the role of Hsp-70 is simply to block backsliding through the pore. A mathematical analysis of both mechanisms is presented and reveals that qualitative differences between the models occur in the behavior of the mean velocity and effective diffusion coefficient as a function of Hsp-70 concentration. An experimental method is proposed for measuring these two quantities that only relies on current experimental techniques.

Full Text

The Full Text of this article is available as a PDF (178.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulsara AR, Elston TC, Doering CR, Lowen SB, Lindenberg K. Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):3958–3969. doi: 10.1103/physreve.53.3958. [DOI] [PubMed] [Google Scholar]
  2. Chauwin J. F., Oster G., Glick B. S. Strong precursor-pore interactions constrain models for mitochondrial protein import. Biophys J. 1998 Apr;74(4):1732–1743. doi: 10.1016/S0006-3495(98)77884-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Glick B. S. Can Hsp70 proteins act as force-generating motors? Cell. 1995 Jan 13;80(1):11–14. doi: 10.1016/0092-8674(95)90444-1. [DOI] [PubMed] [Google Scholar]
  4. Görlich D., Rapoport T. A. Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell. 1993 Nov 19;75(4):615–630. doi: 10.1016/0092-8674(93)90483-7. [DOI] [PubMed] [Google Scholar]
  5. Horst M., Azem A., Schatz G., Glick B. S. What is the driving force for protein import into mitochondria? Biochim Biophys Acta. 1997 Jan 16;1318(1-2):71–78. doi: 10.1016/s0005-2728(96)00131-4. [DOI] [PubMed] [Google Scholar]
  6. Hwang S. T., Wachter C., Schatz G. Protein import into the yeast mitochondrial matrix. A new translocation intermediate between the two mitochondrial membranes. J Biol Chem. 1991 Nov 5;266(31):21083–21089. [PubMed] [Google Scholar]
  7. Lubensky D. K., Nelson D. R. Driven polymer translocation through a narrow pore. Biophys J. 1999 Oct;77(4):1824–1838. doi: 10.1016/S0006-3495(99)77027-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matlack K. E., Misselwitz B., Plath K., Rapoport T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell. 1999 May 28;97(5):553–564. doi: 10.1016/s0092-8674(00)80767-9. [DOI] [PubMed] [Google Scholar]
  9. Matlack K. E., Plath K., Misselwitz B., Rapoport T. A. Protein transport by purified yeast Sec complex and Kar2p without membranes. Science. 1997 Aug 15;277(5328):938–941. doi: 10.1126/science.277.5328.938. [DOI] [PubMed] [Google Scholar]
  10. Panzner S., Dreier L., Hartmann E., Kostka S., Rapoport T. A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell. 1995 May 19;81(4):561–570. doi: 10.1016/0092-8674(95)90077-2. [DOI] [PubMed] [Google Scholar]
  11. Peskin C. S., Odell G. M., Oster G. F. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J. 1993 Jul;65(1):316–324. doi: 10.1016/S0006-3495(93)81035-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Samuel A. D., Berg H. C. Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3502–3506. doi: 10.1073/pnas.92.8.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schneider H. C., Berthold J., Bauer M. F., Dietmeier K., Guiard B., Brunner M., Neupert W. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature. 1994 Oct 27;371(6500):768–774. doi: 10.1038/371768a0. [DOI] [PubMed] [Google Scholar]
  14. Schwartz M. P., Huang S., Matouschek A. The structure of precursor proteins during import into mitochondria. J Biol Chem. 1999 Apr 30;274(18):12759–12764. doi: 10.1074/jbc.274.18.12759. [DOI] [PubMed] [Google Scholar]
  15. Simon S. M., Peskin C. S., Oster G. F. What drives the translocation of proteins? Proc Natl Acad Sci U S A. 1992 May 1;89(9):3770–3774. doi: 10.1073/pnas.89.9.3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ungermann C., Guiard B., Neupert W., Cyr D. M. The delta psi- and Hsp70/MIM44-dependent reaction cycle driving early steps of protein import into mitochondria. EMBO J. 1996 Feb 15;15(4):735–744. [PMC free article] [PubMed] [Google Scholar]
  17. Voisine C., Craig E. A., Zufall N., von Ahsen O., Pfanner N., Voos W. The protein import motor of mitochondria: unfolding and trapping of preproteins are distinct and separable functions of matrix Hsp70. Cell. 1999 May 28;97(5):565–574. doi: 10.1016/s0092-8674(00)80768-0. [DOI] [PubMed] [Google Scholar]
  18. Wang H. Y., Elston T., Mogilner A., Oster G. Force generation in RNA polymerase. Biophys J. 1998 Mar;74(3):1186–1202. doi: 10.1016/S0006-3495(98)77834-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES