Abstract
We have studied the effect of codon-anticodon interaction on the structure and dynamics of transfer RNAs using molecular dynamics simulations over a nanosecond time scale. From our molecular dynamical investigations of the solvated anticodon domain of yeast tRNA(Phe) in the presence and absence of the codon trinucleotides UUC and UUU, we find that, although at a gross level the structures are quite similar for the free and the bound domains, there are small but distinct differences in certain parts of the molecule, notably near the Y37 base. Comparison of the dynamics in terms of interatomic or inter-residual distance fluctuation for the free and the bound domains showed regions of enhanced rigidity in the loop region in the presence of codons. Because fluorescence experiments suggested the existence of multiple conformers of the anticodon domain, which interconvert on a much larger time scale than our simulations, we probed the conformational space using five independent trajectories of 500 ps duration. A generalized ergodic measure analysis of the trajectories revealed that at least for this time scale, all the trajectories populated separate parts of the conformational space, indicating a need for even longer simulations or enhanced sampling of the conformational space to give an unequivocal answer to this question.
Full Text
The Full Text of this article is available as a PDF (469.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abseher R., Nilges M. Are there non-trivial dynamic cross-correlations in proteins? J Mol Biol. 1998 Jun 19;279(4):911–920. doi: 10.1006/jmbi.1998.1807. [DOI] [PubMed] [Google Scholar]
- Auffinger P., Westhof E. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J Mol Biol. 1997 Jun 13;269(3):326–341. doi: 10.1006/jmbi.1997.1022. [DOI] [PubMed] [Google Scholar]
- Braxenthaler M., Unger R., Auerbach D., Given J. A., Moult J. Chaos in protein dynamics. Proteins. 1997 Dec;29(4):417–425. [PubMed] [Google Scholar]
- Brünger A. T., Karplus M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins. 1988;4(2):148–156. doi: 10.1002/prot.340040208. [DOI] [PubMed] [Google Scholar]
- Bujalowski W., Jung M., McLaughlin L. W., Porschke D. Codon-induced association of the isolated anticodon loop of tRNAPhe. Biochemistry. 1986 Oct 21;25(21):6372–6378. doi: 10.1021/bi00369a005. [DOI] [PubMed] [Google Scholar]
- Caves L. S., Evanseck J. D., Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci. 1998 Mar;7(3):649–666. doi: 10.1002/pro.5560070314. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claesens F., Rigler R. Conformational dynamics of the anticodon loop in yeast tRNAPhe as sensed by the fluorescence of wybutine. Eur Biophys J. 1986;13(6):331–342. doi: 10.1007/BF00265669. [DOI] [PubMed] [Google Scholar]
- Clore G. M., Gronenborn A. M., Piper E. A., McLaughlin L. W., Graeser E., van Boom J. H. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study. Biochem J. 1984 Aug 1;221(3):737–751. doi: 10.1042/bj2210737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davanloo P., Sprinzl M., Cramer F. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Biochemistry. 1979 Jul 24;18(15):3189–3199. doi: 10.1021/bi00582a001. [DOI] [PubMed] [Google Scholar]
- Ehrlich R., Lefevre J. F., Remy P. Fluorimetric study of the complex between yeast phenylalanyl-tRNA synthetase and tRNA-Phe. 1. Changes in the conformation of the enzyme and tRNA; modification of the Wybutine neighbourhood. Eur J Biochem. 1980 Jan;103(1):145–153. doi: 10.1111/j.1432-1033.1980.tb04298.x. [DOI] [PubMed] [Google Scholar]
- Elofsson A., Nilsson L. How consistent are molecular dynamics simulations? Comparing structure and dynamics in reduced and oxidized Escherichia coli thioredoxin. J Mol Biol. 1993 Oct 20;233(4):766–780. doi: 10.1006/jmbi.1993.1551. [DOI] [PubMed] [Google Scholar]
- Geerdes H. A., van Boom J. H., Hilbers C. W. Codon--anticodon interaction in yeast tRNAPhe: an 1H NMR study. FEBS Lett. 1978 Apr 1;88(1):27–32. doi: 10.1016/0014-5793(78)80599-7. [DOI] [PubMed] [Google Scholar]
- Harvey S. C., Prabhakaran M., Mao B., McCammon J. A. Phenylalanine transfer RNA: molecular dynamics simulation. Science. 1984 Mar 16;223(4641):1189–1191. doi: 10.1126/science.6560785. [DOI] [PubMed] [Google Scholar]
- Harvey S. C., Prabhakaran M., McCammon J. A. Molecular-dynamics simulation of phenylalanine transfer RNA. I. Methods and general results. Biopolymers. 1985 Jul;24(7):1169–1188. doi: 10.1002/bip.360240706. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Sussman J. L., Warrant R. W., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol. 1978 Aug 25;123(4):631–660. doi: 10.1016/0022-2836(78)90210-3. [DOI] [PubMed] [Google Scholar]
- Labuda D., Pörschke D. Multistep mechanism of codon recognition by transfer ribonucleic acid. Biochemistry. 1980 Aug 5;19(16):3799–3805. doi: 10.1021/bi00557a023. [DOI] [PubMed] [Google Scholar]
- Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
- Lavery R., Sklenar H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J Biomol Struct Dyn. 1988 Aug;6(1):63–91. doi: 10.1080/07391102.1988.10506483. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Matsumoto A., Tomimoto M., Go N. Dynamical structure of transfer RNA studied by normal mode analysis. Eur Biophys J. 1999;28(5):369–379. doi: 10.1007/s002490050221. [DOI] [PubMed] [Google Scholar]
- Misra V. K., Draper D. E. Mg(2+) binding to tRNA revisited: the nonlinear Poisson-Boltzmann model. J Mol Biol. 2000 Jun 9;299(3):813–825. doi: 10.1006/jmbi.2000.3769. [DOI] [PubMed] [Google Scholar]
- Möller A., Wild U., Riesner D., Gassen H. G. Evidence from ultraviolet absorbance measurements for a codon-induced conformational change in lysine tRNA from Escherichia coli. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3266–3270. doi: 10.1073/pnas.76.7.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichols W. L., Rose G. D., Ten Eyck L. F., Zimm B. H. Rigid domains in proteins: an algorithmic approach to their identification. Proteins. 1995 Sep;23(1):38–48. doi: 10.1002/prot.340230106. [DOI] [PubMed] [Google Scholar]
- Norberg J., Nilsson L. On the truncation of long-range electrostatic interactions in DNA. Biophys J. 2000 Sep;79(3):1537–1553. doi: 10.1016/S0006-3495(00)76405-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pongs O., Reinwald E. Function of Y in codon-anticodon interaction of tRNA Phe . Biochem Biophys Res Commun. 1973 Jan 23;50(2):357–363. doi: 10.1016/0006-291x(73)90848-6. [DOI] [PubMed] [Google Scholar]
- Prabhakaran M., Harvey S. C., McCammon J. A. Molecular-dynamics simulation of phenylalanine transfer RNA. II. Amplitudes, anisotropies, and anharmonicities of atomic motions. Biopolymers. 1985 Jul;24(7):1189–1204. doi: 10.1002/bip.360240707. [DOI] [PubMed] [Google Scholar]
- Robertson J. M., Kahan M., Wintermeyer W., Zachau H. G. Interactions of yeast tRNAPhe with ribosomes from yeast and Escherichia coli. A fluorescence spectroscopic study. Eur J Biochem. 1977 Jan 3;72(1):117–125. doi: 10.1111/j.1432-1033.1977.tb11231.x. [DOI] [PubMed] [Google Scholar]
- Schwarz U., Menzel H. M., Gassen H. G. Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-psi-C-G sequence for binding to the 50S ribosomal subunit. Biochemistry. 1976 Jun 1;15(11):2484–2490. doi: 10.1021/bi00656a035. [DOI] [PubMed] [Google Scholar]
- Sharp K. A., Honig B., Harvey S. C. Electrical potential of transfer RNAs: codon-anticodon recognition. Biochemistry. 1990 Jan 16;29(2):340–346. doi: 10.1021/bi00454a006. [DOI] [PubMed] [Google Scholar]
- Straub J. E., Thirumalai D. Exploring the energy landscape in proteins. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):809–813. doi: 10.1073/pnas.90.3.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
- Wilson R. K., Roe B. A. Presence of the hypermodified nucleotide N6-(delta 2-isopentenyl)-2-methylthioadenosine prevents codon misreading by Escherichia coli phenylalanyl-transfer RNA. Proc Natl Acad Sci U S A. 1989 Jan;86(2):409–413. doi: 10.1073/pnas.86.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]