Abstract
We consider the effect of polymer depletion on the transport (diffusion and electrophoresis) of small proteins through semi-dilute solutions of a flexible polymer. A self-consistent field theory may be set up in the important case of quasi-ideal interactions when the protein is small enough. Dynamic depletion, the reorganization of the depletion layer as the protein diffuses, is computed within a free-draining approximation. The transport of the dressed particle (protein + depletion layer) is tackled by extending Ogston's analysis of probe diffusion through fibrous networks to the case of a probe diffusing through a semi-dilute polymer inhomogeneous on the scale of the polymer correlation length. The resulting exponential retardation agrees almost quantitatively with that found in recent electrophoresis experiments of small proteins in polymer solutions that have been ascertained to be semi-dilute (S. P. Radko and A. Chrambach, Electrophoresis, 17:1094-1102, 1996; Biopolymers, 4:183-189, 1997).
Full Text
The Full Text of this article is available as a PDF (79.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chrambach A., Rodbard D. Polyacrylamide gel electrophoresis. Science. 1971 Apr 30;172(3982):440–451. doi: 10.1126/science.172.3982.440. [DOI] [PubMed] [Google Scholar]
- Eisenriegler E, Hanke A, Dietrich S. Polymers interacting with spherical and rodlike particles. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):1134–1152. doi: 10.1103/physreve.54.1134. [DOI] [PubMed] [Google Scholar]
- Hanke A., Eisenriegler E., Dietrich S. Polymer depletion effects near mesoscopic particles. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jun;59(6):6853–6878. doi: 10.1103/physreve.59.6853. [DOI] [PubMed] [Google Scholar]
- LAURENT T. C., BJOERK I., PIETRUSZKIEWICZ A., PERSSON H. ON THE INTERACTION BETWEEN POLYSACCHARIDES AND OTHER MACROMOLECULES. II. THE TRANSPORT OF GLOBULAR PARTICLES THROUGH HYALURONIC ACID SOLUTIONS. Biochim Biophys Acta. 1963 Oct 29;78:351–359. doi: 10.1016/0006-3002(63)91645-7. [DOI] [PubMed] [Google Scholar]
- LAURENT T. C., PIETRUSZKIEWICZ A. The effect of hyaluronic acid on the sedimentation rate of other substances. Biochim Biophys Acta. 1961 May 13;49:258–264. doi: 10.1016/0006-3002(61)90125-1. [DOI] [PubMed] [Google Scholar]
- Radko S. P., Chrambach A. Electrophoresis of proteins in semidilute polyethylene glycol solutions: mechanism of retardation. Biopolymers. 1997 Aug;42(2):183–189. doi: 10.1002/(SICI)1097-0282(199708)42:2<183::AID-BIP7>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
- Radko S. P., Chrambach A. Mechanisms of retardation of rigid spherical particles with 3 to 1,085 nm radius in capillary electrophoresis, using buffered polyacrylamide (molecular weight 5 x 10(6)) solutions. Electrophoresis. 1996 Jun;17(6):1094–1102. doi: 10.1002/elps.1150170619. [DOI] [PubMed] [Google Scholar]
- Rodbard D., Chrambach A. Estimation of molecular radius, free mobility, and valence using polyacylamide gel electrophoresis. Anal Biochem. 1971 Mar;40(1):95–134. doi: 10.1016/0003-2697(71)90086-8. [DOI] [PubMed] [Google Scholar]
- Slater G. W., Guo H. L. An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure. Electrophoresis. 1996 Jun;17(6):977–988. doi: 10.1002/elps.1150170604. [DOI] [PubMed] [Google Scholar]
- Slater G. W., Guo H. L. Ogston gel electrophoretic sieving: how is the fractional volume available to a particle related to its mobility and diffusion coefficient(s)? Electrophoresis. 1995 Jan;16(1):11–15. doi: 10.1002/elps.1150160104. [DOI] [PubMed] [Google Scholar]
- Tokita M, Miyoshi T, Takegoshi K, Hikichi K. Probe diffusion in gels. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Feb;53(2):1823–1827. doi: 10.1103/physreve.53.1823. [DOI] [PubMed] [Google Scholar]
