Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2331–2344. doi: 10.1016/S0006-3495(00)76479-4

Molecular dynamics simulations predict a tilted orientation for the helical region of dynorphin A(1-17) in dimyristoylphosphatidylcholine bilayers.

R Sankararamakrishnan 1, H Weinstein 1
PMCID: PMC1301121  PMID: 11053113

Abstract

The structural properties of the endogenous opioid peptide dynorphin A(1-17) (DynA), a potential analgesic, were studied with molecular dynamics simulations in dimyristoylphosphatidylcholine bilayers. Starting with the known NMR structure of the peptide in dodecylphosphocholine micelles, the N-terminal helical segment of DynA (encompassing residues 1-10) was initially inserted in the bilayer in a perpendicular orientation with respect to the membrane plane. Parallel simulations were carried out from two starting structures, systems A and B, that differ by 4 A in the vertical positioning of the peptide helix. The complex consisted of approximately 26,400 atoms (dynorphin + 86 lipids + approximately 5300 waters). After >2 ns of simulation, which included >1 ns of equilibration, the orientation of the helical segment of DynA had undergone a transition from parallel to tilted with respect to the bilayer normal in both the A and B systems. When the helix axis achieved a approximately 50 degrees angle with the bilayer normal, it remained stable for the next 1 ns of simulation. The two simulations with different starting points converged to the same final structure, with the helix inserted in the bilayer throughout the simulations. Analysis shows that the tilted orientation adopted by the N-terminal helix is due to specific interactions of residues in the DynA sequence with phospholipid headgroups, water, and the hydrocarbon chains. Key elements are the "snorkel model"-type interactions of arginine side chains, the stabilization of the N-terminal hydrophobic sequence in the lipid environment, and the specific interactions of the first residue, Tyr. Water penetration within the bilayer is facilitated by the immersed DynA, but it is not uniform around the surface of the helix. Many water molecules surround the arginine side chains, while water penetration near the helical surface formed by hydrophobic residues is negligible. A mechanism of receptor interaction is proposed for DynA, involving the tilted orientation observed from these simulations of the peptide in the lipid bilayer.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu H., Nagamori T. Conformational analysis of the polar head group in phosphatidylcholine bilayers: a structural change induced by cations. Biochemistry. 1991 May 7;30(18):4510–4516. doi: 10.1021/bi00232a020. [DOI] [PubMed] [Google Scholar]
  2. Alford D. R., Renugopalakrishnan V., Duzgunes N. Dynorphin-phospholipid membrane interactions: role of phospholipid head-group and cholesterol. Int J Pept Protein Res. 1996 Jan-Feb;47(1-2):84–90. doi: 10.1111/j.1399-3011.1996.tb00813.x. [DOI] [PubMed] [Google Scholar]
  3. Asai Y., Watanabe S. Effect of a Dynorphin A analog, E2078, on phospholipid membrane properties. Biol Pharm Bull. 1999 May;22(5):543–545. doi: 10.1248/bpb.22.543. [DOI] [PubMed] [Google Scholar]
  4. Belohorcová K., Davis J. H., Woolf T. B., Roux B. Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J. 1997 Dec;73(6):3039–3055. doi: 10.1016/S0006-3495(97)78332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Braun P., von Heijne G. The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Biochemistry. 1999 Jul 27;38(30):9778–9782. doi: 10.1021/bi990923a. [DOI] [PubMed] [Google Scholar]
  7. Brownstein M. J. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5391–5393. doi: 10.1073/pnas.90.12.5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Büldt G., Gally H. U., Seelig A., Seelig J., Zaccai G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature. 1978 Jan 12;271(5641):182–184. doi: 10.1038/271182a0. [DOI] [PubMed] [Google Scholar]
  9. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  10. Chavkin C., Goldstein A. Specific receptor for the opioid peptide dynorphin: structure--activity relationships. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6543–6547. doi: 10.1073/pnas.78.10.6543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chavkin C., James I. F., Goldstein A. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science. 1982 Jan 22;215(4531):413–415. doi: 10.1126/science.6120570. [DOI] [PubMed] [Google Scholar]
  12. Chiu S. W., Clark M., Balaji V., Subramaniam S., Scott H. L., Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J. 1995 Oct;69(4):1230–1245. doi: 10.1016/S0006-3495(95)80005-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chiu S. W., Jakobsson E., Subramaniam S., Scott H. L. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys J. 1999 Nov;77(5):2462–2469. doi: 10.1016/S0006-3495(99)77082-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. Biophys J. 1999 Apr;76(4):1929–1938. doi: 10.1016/S0006-3495(99)77352-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport. Biophys J. 1999 Apr;76(4):1939–1950. doi: 10.1016/S0006-3495(99)77353-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Corbett A. D., Paterson S. J., McKnight A. T., Magnan J., Kosterlitz H. W. Dynorphin and dynorphin are ligands for the kappa-subtype of opiate receptor. Nature. 1982 Sep 2;299(5878):79–81. doi: 10.1038/299079a0. [DOI] [PubMed] [Google Scholar]
  17. Cox B. M., Opheim K. E., Teschemacher H., Goldstein A. A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci. 1975 Jun 15;16(12):1777–1782. doi: 10.1016/0024-3205(75)90272-6. [DOI] [PubMed] [Google Scholar]
  18. Erne D., Sargent D. F., Schwyzer R. Preferred conformation, orientation, and accumulation of dynorphin A-(1-13)-tridecapeptide on the surface of neutral lipid membranes. Biochemistry. 1985 Jul 30;24(16):4261–4263. doi: 10.1021/bi00337a001. [DOI] [PubMed] [Google Scholar]
  19. Essmann U., Berkowitz M. L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys J. 1999 Apr;76(4):2081–2089. doi: 10.1016/S0006-3495(99)77364-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Filizola M., Laakkonen L., Loew G. H. 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu; and kappa opioid receptors. Protein Eng. 1999 Nov;12(11):927–942. doi: 10.1093/protein/12.11.927. [DOI] [PubMed] [Google Scholar]
  21. Gairin J. E., Mazarguil H., Alvinerie P., Botanch C., Cros J., Meunier J. C. N,N-diallyl-tyrosyl substitution confers antagonist properties on the kappa-selective opioid peptide [D-Pro10]dynorphin A(1-11). Br J Pharmacol. 1988 Dec;95(4):1023–1030. doi: 10.1111/j.1476-5381.1988.tb11735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Goldstein A., Fischli W., Lowney L. I., Hunkapiller M., Hood L. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7219–7223. doi: 10.1073/pnas.78.11.7219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gysin B., Schwyzer R. Head group and structure specific interactions of enkephalins and dynorphin with liposomes: investigation by hydrophobic photolabeling. Arch Biochem Biophys. 1983 Sep;225(2):467–474. doi: 10.1016/0003-9861(83)90055-3. [DOI] [PubMed] [Google Scholar]
  24. Ho C., Stubbs C. D. Hydration at the membrane protein-lipid interface. Biophys J. 1992 Oct;63(4):897–902. doi: 10.1016/S0006-3495(92)81671-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Huang P., Loew G. H. Interaction of an amphiphilic peptide with a phospholipid bilayer surface by molecular dynamics simulation study. J Biomol Struct Dyn. 1995 Apr;12(5):937–956. doi: 10.1080/07391102.1995.10508789. [DOI] [PubMed] [Google Scholar]
  26. Jacobs R. E., White S. H. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry. 1989 Apr 18;28(8):3421–3437. doi: 10.1021/bi00434a042. [DOI] [PubMed] [Google Scholar]
  27. Kovacs F. A., Denny J. K., Song Z., Quine J. R., Cross T. A. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property. J Mol Biol. 2000 Jan 7;295(1):117–125. doi: 10.1006/jmbi.1999.3322. [DOI] [PubMed] [Google Scholar]
  28. Lancaster C. R., Mishra P. K., Hughes D. W., St-Pierre S. A., Bothner-By A. A., Epand R. M. Mimicking the membrane-mediated conformation of dynorphin A-(1-13)-peptide: circular dichroism and nuclear magnetic resonance studies in methanolic solution. Biochemistry. 1991 May 14;30(19):4715–4726. doi: 10.1021/bi00233a012. [DOI] [PubMed] [Google Scholar]
  29. Lewis B. A., Engelman D. M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol. 1983 May 15;166(2):211–217. doi: 10.1016/s0022-2836(83)80007-2. [DOI] [PubMed] [Google Scholar]
  30. Metzger T. G., Paterlini M. G., Portoghese P. S., Ferguson D. M. Application of the message-address concept to the docking of naltrexone and selective naltrexone-derived opioid antagonists into opioid receptor models. Neurochem Res. 1996 Nov;21(11):1287–1294. doi: 10.1007/BF02532369. [DOI] [PubMed] [Google Scholar]
  31. Millan M. J. Kappa-opioid receptors and analgesia. Trends Pharmacol Sci. 1990 Feb;11(2):70–76. doi: 10.1016/0165-6147(90)90321-x. [DOI] [PubMed] [Google Scholar]
  32. Moroder L., Romano R., Guba W., Mierke D. F., Kessler H., Delporte C., Winand J., Christophe J. New evidence for a membrane-bound pathway in hormone receptor binding. Biochemistry. 1993 Dec 14;32(49):13551–13559. doi: 10.1021/bi00212a022. [DOI] [PubMed] [Google Scholar]
  33. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Naqvi T., Haq W., Mathur K. B. Structure-activity relationship studies of dynorphin A and related peptides. Peptides. 1998;19(7):1277–1292. doi: 10.1016/s0196-9781(98)00042-4. [DOI] [PubMed] [Google Scholar]
  35. Petrache H. I., Tristram-Nagle S., Nagle J. F. Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids. 1998 Sep;95(1):83–94. doi: 10.1016/s0009-3084(98)00068-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Renugopalakrishnan V., Rapaka R. S., Huang S. G., Moore S., Hutson T. B. Dynorphin A (1-13) peptide NH groups are solvent exposed: FT-IR and 500 MHz 1H NMR spectroscopic evidence. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1220–1225. doi: 10.1016/s0006-291x(88)80496-0. [DOI] [PubMed] [Google Scholar]
  37. Saviano G., Crescenzi O., Picone D., Temussi P., Tancredi T. Solution structure of human beta-endorphin in helicogenic solvents: an NMR study. J Pept Sci. 1999 Sep;5(9):410–422. doi: 10.1002/(SICI)1099-1387(199909)5:9<410::AID-PSC216>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  38. Schweighofer K. J., Pohorille A. Computer simulation of ion channel gating: the M(2) channel of influenza A virus in a lipid bilayer. Biophys J. 2000 Jan;78(1):150–163. doi: 10.1016/S0006-3495(00)76581-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwyzer R. 100 years lock-and-key concept: are peptide keys shaped and guided to their receptors by the target cell membrane? Biopolymers. 1995;37(1):5–16. doi: 10.1002/bip.360370104. [DOI] [PubMed] [Google Scholar]
  40. Schwyzer R. Estimated conformation, orientation, and accumulation of dynorphin A-(1-13)-tridecapeptide on the surface of neutral lipid membranes. Biochemistry. 1986 Jul 29;25(15):4281–4286. doi: 10.1021/bi00363a016. [DOI] [PubMed] [Google Scholar]
  41. Schwyzer R. Peptide-membrane interactions and a new principle in quantitative structure-activity relationships. Biopolymers. 1991 May;31(6):785–792. doi: 10.1002/bip.360310624. [DOI] [PubMed] [Google Scholar]
  42. Segawa M., Ohno Y., Doi M., Ishida T., Iwashita T. Solution conformation of mu-selective dermorphin and delta-selective deltorphin-I in phospholipid micelles, studied by NMR spectroscopy and molecular dynamics simulations. Int J Pept Protein Res. 1995 Jul;46(1):37–46. [PubMed] [Google Scholar]
  43. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  44. Shen L., Bassolino D., Stouch T. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J. 1997 Jul;73(1):3–20. doi: 10.1016/S0006-3495(97)78042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Snyder K. R., Story S. C., Heidt M. E., Murray T. F., DeLander G. E., Aldrich J. V. Effect of modification of the basic residues of dynorphin A-(1-13) amide on kappa opioid receptor selectivity and opioid activity. J Med Chem. 1992 Nov 13;35(23):4330–4333. doi: 10.1021/jm00101a010. [DOI] [PubMed] [Google Scholar]
  47. Strahs D., Weinstein H. Comparative modeling and molecular dynamics studies of the delta, kappa and mu opioid receptors. Protein Eng. 1997 Sep;10(9):1019–1038. doi: 10.1093/protein/10.9.1019. [DOI] [PubMed] [Google Scholar]
  48. Tessmer M. R., Kallick D. A. NMR and structural model of dynorphin A (1-17) bound to dodecylphosphocholine micelles. Biochemistry. 1997 Feb 25;36(8):1971–1981. doi: 10.1021/bi961457h. [DOI] [PubMed] [Google Scholar]
  49. Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Turcotte A., Lalonde J. M., St-Pierre S., Lemaire S. Dynorphin-(1-13). I. Structure-function relationships of Ala-containing analogs. Int J Pept Protein Res. 1984 Apr;23(4):361–367. [PubMed] [Google Scholar]
  51. Venable R. M., Zhang Y., Hardy B. J., Pastor R. W. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science. 1993 Oct 8;262(5131):223–226. doi: 10.1126/science.8211140. [DOI] [PubMed] [Google Scholar]
  52. Whitehead T. L., McNair S. D., Hadden C. E., Young J. K., Hicks R. P. Membrane-induced secondary structures of neuropeptides: a comparison of the solution conformations adopted by agonists and antagonists of the mammalian tachykinin NK1 receptor. J Med Chem. 1998 Apr 23;41(9):1497–1506. doi: 10.1021/jm970789x. [DOI] [PubMed] [Google Scholar]
  53. Wiener M. C., White S. H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J. 1992 Feb;61(2):434–447. doi: 10.1016/S0006-3495(92)81849-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Williams M., Kowaluk E. A., Arneric S. P. Emerging molecular approaches to pain therapy. J Med Chem. 1999 May 6;42(9):1481–1500. doi: 10.1021/jm9805034. [DOI] [PubMed] [Google Scholar]
  55. Woolf T. B. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics. Biophys J. 1997 Nov;73(5):2376–2392. doi: 10.1016/S0006-3495(97)78267-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Woolf T. B. Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis. Biophys J. 1998 Jan;74(1):115–131. doi: 10.1016/S0006-3495(98)77773-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  58. Wymore T., Wong T. C. Molecular dynamics study of substance P peptides in a biphasic membrane mimic. Biophys J. 1999 Mar;76(3):1199–1212. doi: 10.1016/S0006-3495(99)77284-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wymore T., Wong T. C. Molecular dynamics study of substance P peptides partitioned in a sodium dodecylsulfate micelle. Biophys J. 1999 Mar;76(3):1213–1227. doi: 10.1016/S0006-3495(99)77285-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yan C., Digate R. J., Guiles R. D. NMR studies of the structure and dynamics of peptide E, an endogenous opioid peptide that binds with high affinity to multiple opioid receptor subtypes. Biopolymers. 1999 Jan;49(1):55–70. doi: 10.1002/(SICI)1097-0282(199901)49:1<55::AID-BIP6>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES