Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2416–2433. doi: 10.1016/S0006-3495(00)76486-1

A high-Na(+) conduction state during recovery from inactivation in the K(+) channel Kv1.5.

Z Wang 1, J C Hesketh 1, D Fedida 1
PMCID: PMC1301128  PMID: 11053120

Abstract

Na(+) conductance through cloned K(+) channels has previously allowed characterization of inactivation and K(+) binding within the pore, and here we have used Na(+) permeation to study recovery from C-type inactivation in human Kv1.5 channels. Replacing K(+) in the solutions with Na(+) allows complete Kv1.5 inactivation and alters the recovery. The inactivated state is nonconducting for K(+) but has a Na(+) conductance of 13% of the open state. During recovery, inactivated channels progress to a higher Na(+) conductance state (R) in a voltage-dependent manner before deactivating to closed-inactivated states. Channels finally recover from inactivation in the closed configuration. In the R state channels can be reactivated and exhibit supernormal Na(+) currents with a slow biexponential inactivation. Results suggest two pathways for entry to the inactivated state and a pore conformation, perhaps with a higher Na(+) affinity than the open state. The rate of recovery from inactivation is modulated by Na(+)(o) such that 135 mM Na(+)(o) promotes the recovery to normal closed, rather than closed-inactivated states. A kinetic model of recovery that assumes a highly Na(+)-permeable state and deactivation to closed-inactivated and normal closed states at negative voltages can account for the results. Thus these data offer insight into how Kv1. 5 channels recover their resting conformation after inactivation and how ionic conditions can modify recovery rates and pathways.

Full Text

The Full Text of this article is available as a PDF (273.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiyar J., Withka J. M., Rizzi J. P., Singleton D. H., Andrews G. C., Lin W., Boyd J., Hanson D. C., Simon M., Dethlefs B. Topology of the pore-region of a K+ channel revealed by the NMR-derived structures of scorpion toxins. Neuron. 1995 Nov;15(5):1169–1181. doi: 10.1016/0896-6273(95)90104-3. [DOI] [PubMed] [Google Scholar]
  2. Aldrich R. W., Corey D. P., Stevens C. F. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature. 1983 Dec 1;306(5942):436–441. doi: 10.1038/306436a0. [DOI] [PubMed] [Google Scholar]
  3. Barry D. M., Trimmer J. S., Merlie J. P., Nerbonne J. M. Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res. 1995 Aug;77(2):361–369. doi: 10.1161/01.res.77.2.361. [DOI] [PubMed] [Google Scholar]
  4. Bezanilla F., Armstrong C. M. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977 Nov;70(5):549–566. doi: 10.1085/jgp.70.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Block B. M., Jones S. W. Ion permeation and block of M-type and delayed rectifier potassium channels. Whole-cell recordings from bullfrog sympathetic neurons. J Gen Physiol. 1996 Apr;107(4):473–488. doi: 10.1085/jgp.107.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bretschneider F., Wrisch A., Lehmann-Horn F., Grissmer S. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels. Biophys J. 1999 May;76(5):2351–2360. doi: 10.1016/S0006-3495(99)77392-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Callahan M. J., Korn S. J. Permeation of Na+ through a delayed rectifier K+ channel in chick dorsal root ganglion neurons. J Gen Physiol. 1994 Oct;104(4):747–771. doi: 10.1085/jgp.104.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Biasi M., Wang Z., Accili E., Wible B., Fedida D. Open channel block of human heart hKv1.5 by the beta-subunit hKv beta 1.2. Am J Physiol. 1997 Jun;272(6 Pt 2):H2932–H2941. doi: 10.1152/ajpheart.1997.272.6.H2932. [DOI] [PubMed] [Google Scholar]
  9. Dixon J. E., McKinnon D. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Circ Res. 1994 Aug;75(2):252–260. doi: 10.1161/01.res.75.2.252. [DOI] [PubMed] [Google Scholar]
  10. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  11. Fedida D., Maruoka N. D., Lin S. Modulation of slow inactivation in human cardiac Kv1.5 channels by extra- and intracellular permeant cations. J Physiol. 1999 Mar 1;515(Pt 2):315–329. doi: 10.1111/j.1469-7793.1999.315ac.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fedida D., Wible B., Wang Z., Fermini B., Faust F., Nattel S., Brown A. M. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ Res. 1993 Jul;73(1):210–216. doi: 10.1161/01.res.73.1.210. [DOI] [PubMed] [Google Scholar]
  13. French R. J., Wells J. B. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon. J Gen Physiol. 1977 Dec;70(6):707–724. doi: 10.1085/jgp.70.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grissmer S., Cahalan M. TEA prevents inactivation while blocking open K+ channels in human T lymphocytes. Biophys J. 1989 Jan;55(1):203–206. doi: 10.1016/S0006-3495(89)82793-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hesketh J. C., Fedida D. Sequential gating in the human heart K(+) channel Kv1.5 incorporates Q(1) and Q(2) charge components. Am J Physiol. 1999 Nov;277(5 Pt 2):H1956–H1966. doi: 10.1152/ajpheart.1999.277.5.H1956. [DOI] [PubMed] [Google Scholar]
  17. Hoshi T., Zagotta W. N., Aldrich R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991 Oct;7(4):547–556. doi: 10.1016/0896-6273(91)90367-9. [DOI] [PubMed] [Google Scholar]
  18. Kavanaugh M. P., Hurst R. S., Yakel J., Varnum M. D., Adelman J. P., North R. A. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron. 1992 Mar;8(3):493–497. doi: 10.1016/0896-6273(92)90277-k. [DOI] [PubMed] [Google Scholar]
  19. Kiss L., Immke D., LoTurco J., Korn S. J. The interaction of Na+ and K+ in voltage-gated potassium channels. Evidence for cation binding sites of different affinity. J Gen Physiol. 1998 Feb;111(2):195–206. doi: 10.1085/jgp.111.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kiss L., Korn S. J. Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys J. 1998 Apr;74(4):1840–1849. doi: 10.1016/S0006-3495(98)77894-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kiss L., LoTurco J., Korn S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys J. 1999 Jan;76(1 Pt 1):253–263. doi: 10.1016/S0006-3495(99)77194-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Korn S. J., Ikeda S. R. Permeation selectivity by competition in a delayed rectifier potassium channel. Science. 1995 Jul 21;269(5222):410–412. doi: 10.1126/science.7618108. [DOI] [PubMed] [Google Scholar]
  23. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  24. Loots E., Isacoff E. Y. Protein rearrangements underlying slow inactivation of the Shaker K+ channel. J Gen Physiol. 1998 Oct;112(4):377–389. doi: 10.1085/jgp.112.4.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  26. Mays D. J., Foose J. M., Philipson L. H., Tamkun M. M. Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest. 1995 Jul;96(1):282–292. doi: 10.1172/JCI118032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ogielska E. M., Aldrich R. W. A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore. J Gen Physiol. 1998 Aug;112(2):243–257. doi: 10.1085/jgp.112.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ogielska E. M., Aldrich R. W. Functional consequences of a decreased potassium affinity in a potassium channel pore. Ion interactions and C-type inactivation. J Gen Physiol. 1999 Feb;113(2):347–358. doi: 10.1085/jgp.113.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ogielska E. M., Zagotta W. N., Hoshi T., Heinemann S. H., Haab J., Aldrich R. W. Cooperative subunit interactions in C-type inactivation of K channels. Biophys J. 1995 Dec;69(6):2449–2457. doi: 10.1016/S0006-3495(95)80114-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Panyi G., Sheng Z., Deutsch C. C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J. 1995 Sep;69(3):896–903. doi: 10.1016/S0006-3495(95)79963-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rich T. C., Snyders D. J. Evidence for multiple open and inactivated states of the hKv1.5 delayed rectifier. Biophys J. 1998 Jul;75(1):183–195. doi: 10.1016/S0006-3495(98)77505-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Ion conduction through C-type inactivated Shaker channels. J Gen Physiol. 1997 Nov;110(5):539–550. doi: 10.1085/jgp.110.5.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Starkus J. G., Kuschel L., Rayner M. D., Heinemann S. H. Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F. J Gen Physiol. 1998 Jul;112(1):85–93. doi: 10.1085/jgp.112.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yellen G., Sodickson D., Chen T. Y., Jurman M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr;66(4):1068–1075. doi: 10.1016/S0006-3495(94)80888-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES