Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2434–2453. doi: 10.1016/S0006-3495(00)76487-3

Variable ratio of permeability to gating charge of rBIIA sodium channels and sodium influx in Xenopus oocytes.

N G Greeff 1, F J Kühn 1
PMCID: PMC1301129  PMID: 11053121

Abstract

Whole-cell gating current recording from rat brain IIA sodium channels in Xenopus oocytes was achieved using a high-expression system and a newly developed high-speed two-electrode voltage-clamp. The resulting ionic currents were increased by an order of magnitude. Surprisingly, the measured corresponding gating currents were approximately 5-10 times larger than expected from ionic permeability. This prompted us to minimize uncertainties about clamp asymmetries and to quantify the ratio of sodium permeability to gating charge, which initially would be expected to be constant for a homogeneous channel population. The systematic study, however, showed a 10- to 20-fold variation of this ratio in different experiments, and even in the same cell during an experiment. The ratio of P(Na)/Q was found to correlate with substantial changes observed for the sodium reversal potential. The data suggest that a cytoplasmic sodium load in Xenopus oocytes or the energy consumption required to regulate the increase in cytoplasmic sodium represents a condition where most of the expressed sodium channels keep their pore closed due to yet unknown mechanisms. In contrast, the movements of the voltage sensors remain undisturbed, producing gating current with normal properties.

Full Text

The Full Text of this article is available as a PDF (275.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggarwal S. K., MacKinnon R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996 Jun;16(6):1169–1177. doi: 10.1016/s0896-6273(00)80143-9. [DOI] [PubMed] [Google Scholar]
  2. Almers W. Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol. 1978;82:96–190. doi: 10.1007/BFb0030498. [DOI] [PubMed] [Google Scholar]
  3. Armstrong C. M., Bezanilla F. Currents related to movement of the gating particles of the sodium channels. Nature. 1973 Apr 13;242(5398):459–461. doi: 10.1038/242459a0. [DOI] [PubMed] [Google Scholar]
  4. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Armstrong C. M., Hille B. Voltage-gated ion channels and electrical excitability. Neuron. 1998 Mar;20(3):371–380. doi: 10.1016/s0896-6273(00)80981-2. [DOI] [PubMed] [Google Scholar]
  6. Armstrong C. M. Sodium channels and gating currents. Physiol Rev. 1981 Jul;61(3):644–683. doi: 10.1152/physrev.1981.61.3.644. [DOI] [PubMed] [Google Scholar]
  7. Auld V. J., Goldin A. L., Krafte D. S., Marshall J., Dunn J. M., Catterall W. A., Lester H. A., Davidson N., Dunn R. J. A rat brain Na+ channel alpha subunit with novel gating properties. Neuron. 1988 Aug;1(6):449–461. doi: 10.1016/0896-6273(88)90176-6. [DOI] [PubMed] [Google Scholar]
  8. Bangalore R., Mehrke G., Gingrich K., Hofmann F., Kass R. S. Influence of L-type Ca channel alpha 2/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells. Am J Physiol. 1996 May;270(5 Pt 2):H1521–H1528. doi: 10.1152/ajpheart.1996.270.5.H1521. [DOI] [PubMed] [Google Scholar]
  9. Baumgartner W., Islas L., Sigworth F. J. Two-microelectrode voltage clamp of Xenopus oocytes: voltage errors and compensation for local current flow. Biophys J. 1999 Oct;77(4):1980–1991. doi: 10.1016/S0006-3495(99)77039-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bekkers J. M., Forster I. C., Greeff N. G. Gating current associated with inactivated states of the squid axon gating channel. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8311–8315. doi: 10.1073/pnas.87.21.8311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bekkers J. M., Greeff N. G., Keynes R. D., Neumcke B. The effect of local anaesthetics on the components of the asymmetry current in the squid giant axon. J Physiol. 1984 Jul;352:653–668. doi: 10.1113/jphysiol.1984.sp015315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bekkers J. M., Greeff N. G., Keynes R. D. The conductance and density of sodium channels in the cut-open squid giant axon. J Physiol. 1986 Aug;377:463–486. doi: 10.1113/jphysiol.1986.sp016198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bezanilla F., Perozo E., Stefani E. Gating of Shaker K+ channels: II. The components of gating currents and a model of channel activation. Biophys J. 1994 Apr;66(4):1011–1021. doi: 10.1016/S0006-3495(94)80882-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bezanilla F., Stefani E. Gating currents. Methods Enzymol. 1998;293:331–352. doi: 10.1016/s0076-6879(98)93022-1. [DOI] [PubMed] [Google Scholar]
  15. Bulatko A. K., Greeff N. G. Functional availability of sodium channels modulated by cytosolic free Ca2+ in cultured mammalian neurons (N1E-115). J Physiol. 1995 Apr 15;484(Pt 2):307–312. doi: 10.1113/jphysiol.1995.sp020666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cha A., Ruben P. C., George A. L., Jr, Fujimoto E., Bezanilla F. Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. Neuron. 1999 Jan;22(1):73–87. doi: 10.1016/s0896-6273(00)80680-7. [DOI] [PubMed] [Google Scholar]
  17. Chahine M., George A. L., Jr, Zhou M., Ji S., Sun W., Barchi R. L., Horn R. Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron. 1994 Feb;12(2):281–294. doi: 10.1016/0896-6273(94)90271-2. [DOI] [PubMed] [Google Scholar]
  18. Chen L. Q., Santarelli V., Horn R., Kallen R. G. A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J Gen Physiol. 1996 Dec;108(6):549–556. doi: 10.1085/jgp.108.6.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chiamvimonvat N., Pérez-García M. T., Tomaselli G. F., Marban E. Control of ion flux and selectivity by negatively charged residues in the outer mouth of rat sodium channels. J Physiol. 1996 Feb 15;491(Pt 1):51–59. doi: 10.1113/jphysiol.1996.sp021195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Conti F., De Felice L. J., Wanke E. Potassium and sodium ion current noise in the membrane of the squid giant axon. J Physiol. 1975 Jun;248(1):45–82. doi: 10.1113/jphysiol.1975.sp010962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Conti F., Gheri A., Pusch M., Moran O. Use dependence of tetrodotoxin block of sodium channels: a revival of the trapped-ion mechanism. Biophys J. 1996 Sep;71(3):1295–1312. doi: 10.1016/S0006-3495(96)79330-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Conti F., Stühmer W. Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J. 1989;17(2):53–59. doi: 10.1007/BF00257102. [DOI] [PubMed] [Google Scholar]
  23. Dick D. A., Fry D. J. Sodium fluxes in single amphibian oocytes: further studies and a new model. J Physiol. 1975 May;247(1):91–116. doi: 10.1113/jphysiol.1975.sp010922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Forster I. C., Greeff N. G. High resolution recording of asymmetry currents from the squid giant axon: technical aspects of voltage clamp design. J Neurosci Methods. 1990 Aug;33(2-3):185–205. doi: 10.1016/0165-0270(90)90023-9. [DOI] [PubMed] [Google Scholar]
  25. Galili G., Kawata E. E., Smith L. D., Larkins B. A. Role of the 3'-poly(A) sequence in translational regulation of mRNAs in Xenopus laevis oocytes. J Biol Chem. 1988 Apr 25;263(12):5764–5770. [PubMed] [Google Scholar]
  26. Garty H., Palmer L. G. Epithelial sodium channels: function, structure, and regulation. Physiol Rev. 1997 Apr;77(2):359–396. doi: 10.1152/physrev.1997.77.2.359. [DOI] [PubMed] [Google Scholar]
  27. Goldin A. L. Expression of ion channels by injection of mRNA into Xenopus oocytes. Methods Cell Biol. 1991;36:487–509. doi: 10.1016/s0091-679x(08)60293-9. [DOI] [PubMed] [Google Scholar]
  28. Greeff N. G., Forster I. C. The quantal gating charge of sodium channel inactivation. Eur Biophys J. 1991;20(3):165–176. doi: 10.1007/BF01561139. [DOI] [PubMed] [Google Scholar]
  29. Greeff N. G., Keynes R. D., Van Helden D. F. Fractionation of the asymmetry current in the squid giant axon into inactivating and non-inactivating components. Proc R Soc Lond B Biol Sci. 1982 Jun 22;215(1200):375–389. doi: 10.1098/rspb.1982.0048. [DOI] [PubMed] [Google Scholar]
  30. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hille B. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model. J Gen Physiol. 1975 Nov;66(5):535–560. doi: 10.1085/jgp.66.5.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hirschberg B., Rovner A., Lieberman M., Patlak J. Transfer of twelve charges is needed to open skeletal muscle Na+ channels. J Gen Physiol. 1995 Dec;106(6):1053–1068. doi: 10.1085/jgp.106.6.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Horn R. Counting charges. J Gen Physiol. 1996 Sep;108(3):129–132. doi: 10.1085/jgp.108.3.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Horowitz S. B., Paine P. L., Tluczek L., Reynhout J. K. Reference phase analysis of free and bound intracellular solutes. I. Sodium and potassium in amphibian oocytes. Biophys J. 1979 Jan;25(1):33–44. doi: 10.1016/S0006-3495(79)85276-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ji S., George A. L., Jr, Horn R., Barchi R. L. Paramyotonia congenita mutations reveal different roles for segments S3 and S4 of domain D4 in hSkM1 sodium channel gating. J Gen Physiol. 1996 Feb;107(2):183–194. doi: 10.1085/jgp.107.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jones L. P., DeMaria C. D., Yue D. T. N-type calcium channel inactivation probed by gating-current analysis. Biophys J. 1999 May;76(5):2530–2552. doi: 10.1016/S0006-3495(99)77407-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jones L. P., Wei S. K., Yue D. T. Mechanism of auxiliary subunit modulation of neuronal alpha1E calcium channels. J Gen Physiol. 1998 Aug;112(2):125–143. doi: 10.1085/jgp.112.2.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Josephson I. R., Varadi G. The beta subunit increases Ca2+ currents and gating charge movements of human cardiac L-type Ca2+ channels. Biophys J. 1996 Mar;70(3):1285–1293. doi: 10.1016/S0006-3495(96)79685-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kamp T. J., Pérez-García M. T., Marban E. Enhancement of ionic current and charge movement by coexpression of calcium channel beta 1A subunit with alpha 1C subunit in a human embryonic kidney cell line. J Physiol. 1996 Apr 1;492(Pt 1):89–96. doi: 10.1113/jphysiol.1996.sp021291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kellenberger S., Gautschi I., Rossier B. C., Schild L. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest. 1998 Jun 15;101(12):2741–2750. doi: 10.1172/JCI2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Keynes R. D., Rojas E. Kinetics and steady-state properties of the charged system controlling sodium conductance in the squid giant axon. J Physiol. 1974 Jun;239(2):393–434. doi: 10.1113/jphysiol.1974.sp010575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Komwatana P., Dinudom A., Young J. A., Cook D. I. Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8107–8111. doi: 10.1073/pnas.93.15.8107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kontis K. J., Goldin A. L. Sodium channel inactivation is altered by substitution of voltage sensor positive charges. J Gen Physiol. 1997 Oct;110(4):403–413. doi: 10.1085/jgp.110.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kühn F. J., Greeff N. G. Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization. J Gen Physiol. 1999 Aug;114(2):167–183. doi: 10.1085/jgp.114.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Marban E., Yamagishi T., Tomaselli G. F. Structure and function of voltage-gated sodium channels. J Physiol. 1998 May 1;508(Pt 3):647–657. doi: 10.1111/j.1469-7793.1998.647bp.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Neely A., Wei X., Olcese R., Birnbaumer L., Stefani E. Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science. 1993 Oct 22;262(5133):575–578. doi: 10.1126/science.8211185. [DOI] [PubMed] [Google Scholar]
  47. Patton D. E., Goldin A. L. A voltage-dependent gating transition induces use-dependent block by tetrodotoxin of rat IIA sodium channels expressed in Xenopus oocytes. Neuron. 1991 Oct;7(4):637–647. doi: 10.1016/0896-6273(91)90376-b. [DOI] [PubMed] [Google Scholar]
  48. Patton D. E., West J. W., Catterall W. A., Goldin A. L. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10905–10909. doi: 10.1073/pnas.89.22.10905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Perozo E., MacKinnon R., Bezanilla F., Stefani E. Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron. 1993 Aug;11(2):353–358. doi: 10.1016/0896-6273(93)90190-3. [DOI] [PubMed] [Google Scholar]
  50. Perozo E., Santacruz-Toloza L., Stefani E., Bezanilla F., Papazian D. M. S4 mutations alter gating currents of Shaker K channels. Biophys J. 1994 Feb;66(2 Pt 1):345–354. doi: 10.1016/s0006-3495(94)80783-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Pusch M., Conti F., Stühmer W. Intracellular magnesium blocks sodium outward currents in a voltage- and dose-dependent manner. Biophys J. 1989 Jun;55(6):1267–1271. doi: 10.1016/S0006-3495(89)82922-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Pusch M., Noda M., Stühmer W., Numa S., Conti F. Single point mutations of the sodium channel drastically reduce the pore permeability without preventing its gating. Eur Biophys J. 1991;20(3):127–133. doi: 10.1007/BF01561134. [DOI] [PubMed] [Google Scholar]
  53. Pusch M. Open-channel block of Na+ channels by intracellular Mg2+. Eur Biophys J. 1990;18(6):317–326. doi: 10.1007/BF00196922. [DOI] [PubMed] [Google Scholar]
  54. Richter J. D., Smith L. D. Differential capacity for translation and lack of competition between mRNAs that segregate to free and membrane-bound polysomes. Cell. 1981 Nov;27(1 Pt 2):183–191. doi: 10.1016/0092-8674(81)90372-x. [DOI] [PubMed] [Google Scholar]
  55. Ruben P. C., Fleig A., Featherstone D., Starkus J. G., Rayner M. D. Effects of clamp rise-time on rat brain IIA sodium channels in Xenopus oocytes. J Neurosci Methods. 1997 May 16;73(2):113–122. doi: 10.1016/s0165-0270(96)02216-9. [DOI] [PubMed] [Google Scholar]
  56. Schoppa N. E., McCormack K., Tanouye M. A., Sigworth F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science. 1992 Mar 27;255(5052):1712–1715. doi: 10.1126/science.1553560. [DOI] [PubMed] [Google Scholar]
  57. Schreibmayer W., Lester H. A., Dascal N. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes. Pflugers Arch. 1994 Mar;426(5):453–458. doi: 10.1007/BF00388310. [DOI] [PubMed] [Google Scholar]
  58. Shih T. M., Smith R. D., Toro L., Goldin A. L. High-level expression and detection of ion channels in Xenopus oocytes. Methods Enzymol. 1998;293:529–556. doi: 10.1016/s0076-6879(98)93032-4. [DOI] [PubMed] [Google Scholar]
  59. Sigg D., Bezanilla F. Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. J Gen Physiol. 1997 Jan;109(1):27–39. doi: 10.1085/jgp.109.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sigworth F. J. Charge movement in the sodium channel. J Gen Physiol. 1995 Dec;106(6):1047–1051. doi: 10.1085/jgp.106.6.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Sigworth F. J. The variance of sodium current fluctuations at the node of Ranvier. J Physiol. 1980 Oct;307:97–129. doi: 10.1113/jphysiol.1980.sp013426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Sigworth F. J. Voltage gating of ion channels. Q Rev Biophys. 1994 Feb;27(1):1–40. doi: 10.1017/s0033583500002894. [DOI] [PubMed] [Google Scholar]
  63. Stefani E., Bezanilla F. Cut-open oocyte voltage-clamp technique. Methods Enzymol. 1998;293:300–318. doi: 10.1016/s0076-6879(98)93020-8. [DOI] [PubMed] [Google Scholar]
  64. Stefani E., Toro L., Perozo E., Bezanilla F. Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J. 1994 Apr;66(4):996–1010. doi: 10.1016/S0006-3495(94)80881-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Stühmer W., Conti F., Suzuki H., Wang X. D., Noda M., Yahagi N., Kubo H., Numa S. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989 Jun 22;339(6226):597–603. doi: 10.1038/339597a0. [DOI] [PubMed] [Google Scholar]
  66. Vassilev P. M., Scheuer T., Catterall W. A. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science. 1988 Sep 23;241(4873):1658–1661. doi: 10.1126/science.241.4873.1658. [DOI] [PubMed] [Google Scholar]
  67. Yang N., George A. L., Jr, Horn R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 1996 Jan;16(1):113–122. doi: 10.1016/s0896-6273(00)80028-8. [DOI] [PubMed] [Google Scholar]
  68. Yang N., Horn R. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 1995 Jul;15(1):213–218. doi: 10.1016/0896-6273(95)90078-0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES