Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2535–2546. doi: 10.1016/S0006-3495(00)76494-0

Two mechanisms of K(+)-dependent potentiation in Kv2.1 potassium channels.

M J Wood 1, S J Korn 1
PMCID: PMC1301136  PMID: 11053128

Abstract

Elevation of external [K(+)] potentiates outward K(+) current through several voltage-gated K(+) channels. This increase in current magnitude is paradoxical in that it occurs despite a significant decrease in driving force. We have investigated the mechanisms involved in K(+)-dependent current potentiation in the Kv2.1 K(+) channel. With holding potentials of -120 to -150 mV, which completely removed channels from the voltage-sensitive inactivated state, elevation of external [K(+)] up to 10 mM produced a concentration-dependent increase in outward current magnitude. In the absence of inactivation, currents were maximally potentiated by 38%. At more positive holding potentials, which produced steady-state inactivation, K(+)-dependent potentiation was enhanced. The additional K(+)-dependent potentiation (above 38%) at more positive holding potentials was precisely equal to a K(+)-dependent reduction in steady-state inactivation. Mutation of two lysine residues in the outer vestibule of Kv2.1 (K356 and K382), to smaller, uncharged residues (glycine and valine, respectively), completely abolished K(+)-dependent potentiation that was not associated with inactivation. These mutations did not influence steady-state inactivation or the K(+)-dependent potentiation due to reduction in steady-state inactivation. These results demonstrate that K(+)-dependent potentiation can be completely accounted for by two independent mechanisms: one that involved the outer vestibule lysines and one that involved K(+)-dependent removal of channels from the inactivated state. Previous studies demonstrated that the outer vestibule of Kv2.1 can be in at least two conformations, depending on the occupancy of the selectivity filter by K(+) (Immke, D., M. Wood, L. Kiss, and S. J. Korn. 1999. J. Gen. Physiol. 113:819-836; Immke, D., and S. J. Korn. 2000. J. Gen. Physiol. 115:509-518). This change in conformation was functionally defined by a change in TEA sensitivity. Similar to the K(+)-dependent change in TEA sensitivity, the lysine-dependent potentiation depended primarily (>90%) on Lys-356 and was enhanced by lowering initial K(+) occupancy of the pore. Furthermore, the K(+)-dependent changes in current magnitude and TEA sensitivity were highly correlated. These results suggest that the previously described K(+)-dependent change in outer vestibule conformation underlies the lysine-sensitive, K(+)-dependent potentiation mechanism.

Full Text

The Full Text of this article is available as a PDF (149.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott G. W., Sesti F., Splawski I., Buck M. E., Lehmann M. H., Timothy K. W., Keating M. T., Goldstein S. A. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999 Apr 16;97(2):175–187. doi: 10.1016/s0092-8674(00)80728-x. [DOI] [PubMed] [Google Scholar]
  2. Baukrowitz T., Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995 Oct;15(4):951–960. doi: 10.1016/0896-6273(95)90185-x. [DOI] [PubMed] [Google Scholar]
  3. Bretschneider F., Wrisch A., Lehmann-Horn F., Grissmer S. External tetraethylammonium as a molecular caliper for sensing the shape of the outer vestibule of potassium channels. Biophys J. 1999 May;76(5):2351–2360. doi: 10.1016/S0006-3495(99)77392-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choi J. S., Hahn S. J., Rhie D. J., Yoon S. H., Jo Y. H., Kim M. S. Mechanism of fluoxetine block of cloned voltage-activated potassium channel Kv1.3. J Pharmacol Exp Ther. 1999 Oct;291(1):1–6. [PubMed] [Google Scholar]
  5. Deal K. K., England S. K., Tamkun M. M. Molecular physiology of cardiac potassium channels. Physiol Rev. 1996 Jan;76(1):49–67. doi: 10.1152/physrev.1996.76.1.49. [DOI] [PubMed] [Google Scholar]
  6. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  7. Du J., Haak L. L., Phillips-Tansey E., Russell J. T., McBain C. J. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol. 2000 Jan 1;522(Pt 1):19–31. doi: 10.1111/j.1469-7793.2000.t01-2-00019.xm. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fedida D., Maruoka N. D., Lin S. Modulation of slow inactivation in human cardiac Kv1.5 channels by extra- and intracellular permeant cations. J Physiol. 1999 Mar 1;515(Pt 2):315–329. doi: 10.1111/j.1469-7793.1999.315ac.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grigoriev N. G., Spafford J. D., Spencer A. N. Modulation of jellyfish potassium channels by external potassium ions. J Neurophysiol. 1999 Oct;82(4):1728–1739. doi: 10.1152/jn.1999.82.4.1728. [DOI] [PubMed] [Google Scholar]
  10. Gross A., Abramson T., MacKinnon R. Transfer of the scorpion toxin receptor to an insensitive potassium channel. Neuron. 1994 Oct;13(4):961–966. doi: 10.1016/0896-6273(94)90261-5. [DOI] [PubMed] [Google Scholar]
  11. Harris R. E., Isacoff E. Y. Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels. Biophys J. 1996 Jul;71(1):209–219. doi: 10.1016/S0006-3495(96)79217-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heginbotham L., MacKinnon R. The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron. 1992 Mar;8(3):483–491. doi: 10.1016/0896-6273(92)90276-j. [DOI] [PubMed] [Google Scholar]
  13. Immke D., Kiss L., LoTurco J., Korn S. J. Influence of non-P region domains on selectivity filter properties in voltage-gated K+ channels. Receptors Channels. 1998;6(3):179–188. [PubMed] [Google Scholar]
  14. Immke D., Korn S. J. Ion-Ion interactions at the selectivity filter. Evidence from K(+)-dependent modulation of tetraethylammonium efficacy in Kv2.1 potassium channels. J Gen Physiol. 2000 Apr;115(4):509–518. doi: 10.1085/jgp.115.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Immke D., Wood M., Kiss L., Korn S. J. Potassium-dependent changes in the conformation of the Kv2.1 potassium channel pore. J Gen Physiol. 1999 Jun;113(6):819–836. doi: 10.1085/jgp.113.6.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jurman M. E., Boland L. M., Liu Y., Yellen G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques. 1994 Nov;17(5):876–881. [PubMed] [Google Scholar]
  17. Khodakhah K., Melishchuk A., Armstrong C. M. Killing K channels with TEA+. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13335–13338. doi: 10.1073/pnas.94.24.13335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kiss L., Korn S. J. Modulation of C-type inactivation by K+ at the potassium channel selectivity filter. Biophys J. 1998 Apr;74(4):1840–1849. doi: 10.1016/S0006-3495(98)77894-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kiss L., LoTurco J., Korn S. J. Contribution of the selectivity filter to inactivation in potassium channels. Biophys J. 1999 Jan;76(1 Pt 1):253–263. doi: 10.1016/S0006-3495(99)77194-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klemic K. G., Shieh C. C., Kirsch G. E., Jones S. W. Inactivation of Kv2.1 potassium channels. Biophys J. 1998 Apr;74(4):1779–1789. doi: 10.1016/S0006-3495(98)77888-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Korn S. J., Ikeda S. R. Permeation selectivity by competition in a delayed rectifier potassium channel. Science. 1995 Jul 21;269(5222):410–412. doi: 10.1126/science.7618108. [DOI] [PubMed] [Google Scholar]
  22. Kürz L. L., Zühlke R. D., Zhang H. J., Joho R. H. Side-chain accessibilities in the pore of a K+ channel probed by sulfhydryl-specific reagents after cysteine-scanning mutagenesis. Biophys J. 1995 Mar;68(3):900–905. doi: 10.1016/S0006-3495(95)80266-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levy D. I., Deutsch C. Recovery from C-type inactivation is modulated by extracellular potassium. Biophys J. 1996 Feb;70(2):798–805. doi: 10.1016/S0006-3495(96)79619-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
  25. Lopatin A. N., Nichols C. G. Internal Na+ and Mg2+ blockade of DRK1 (Kv2.1) potassium channels expressed in Xenopus oocytes. Inward rectification of a delayed rectifier. J Gen Physiol. 1994 Feb;103(2):203–216. doi: 10.1085/jgp.103.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. López-Barneo J., Hoshi T., Heinemann S. H., Aldrich R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1(1):61–71. [PubMed] [Google Scholar]
  27. Melishchuk A., Loboda A., Armstrong C. M. Loss of shaker K channel conductance in 0 K+ solutions: role of the voltage sensor. Biophys J. 1998 Oct;75(4):1828–1835. doi: 10.1016/S0006-3495(98)77624-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pardo L. A., Heinemann S. H., Terlau H., Ludewig U., Lorra C., Pongs O., Stühmer W. Extracellular K+ specifically modulates a rat brain K+ channel. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2466–2470. doi: 10.1073/pnas.89.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995 Apr 21;81(2):299–307. doi: 10.1016/0092-8674(95)90340-2. [DOI] [PubMed] [Google Scholar]
  30. Valenzuela C., Delpón E., Tamkun M. M., Tamargo J., Snyders D. J. Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophys J. 1995 Aug;69(2):418–427. doi: 10.1016/S0006-3495(95)79914-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang Y., Sigworth F. J. Single-channel properties of IKs potassium channels. J Gen Physiol. 1998 Dec;112(6):665–678. doi: 10.1085/jgp.112.6.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yellen G., Sodickson D., Chen T. Y., Jurman M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J. 1994 Apr;66(4):1068–1075. doi: 10.1016/S0006-3495(94)80888-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES