Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2547–2556. doi: 10.1016/S0006-3495(00)76495-2

G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels.

Y Chen-Izu 1, R P Xiao 1, L T Izu 1, H Cheng 1, M Kuschel 1, H Spurgeon 1, E G Lakatta 1
PMCID: PMC1301137  PMID: 11053129

Abstract

A plausible determinant of the specificity of receptor signaling is the cellular compartment over which the signal is broadcast. In rat heart, stimulation of beta(1)-adrenergic receptor (beta(1)-AR), coupled to G(s)-protein, or beta(2)-AR, coupled to G(s)- and G(i)-proteins, both increase L-type Ca(2+) current, causing enhanced contractile strength. But only beta(1)-AR stimulation increases the phosphorylation of phospholamban, troponin-I, and C-protein, causing accelerated muscle relaxation and reduced myofilament sensitivity to Ca(2+). beta(2)-AR stimulation does not affect any of these intracellular proteins. We hypothesized that beta(2)-AR signaling might be localized to the cell membrane. Thus we examined the spatial range and characteristics of beta(1)-AR and beta(2)-AR signaling on their common effector, L-type Ca(2+) channels. Using the cell-attached patch-clamp technique, we show that stimulation of beta(1)-AR or beta(2)-AR in the patch membrane, by adding agonist into patch pipette, both activated the channels in the patch. But when the agonist was applied to the membrane outside the patch pipette, only beta(1)-AR stimulation activated the channels. Thus, beta(1)-AR signaling to the channels is diffusive through cytosol, whereas beta(2)-AR signaling is localized to the cell membrane. Furthermore, activation of G(i) is essential to the localization of beta(2)-AR signaling because in pertussis toxin-treated cells, beta(2)-AR signaling becomes diffusive. Our results suggest that the dual coupling of beta(2)-AR to both G(s)- and G(i)-proteins leads to a highly localized beta(2)-AR signaling pathway to modulate sarcolemmal L-type Ca(2+) channels in rat ventricular myocytes.

Full Text

The Full Text of this article is available as a PDF (132.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschuld R. A., Starling R. C., Hamlin R. L., Billman G. E., Hensley J., Castillo L., Fertel R. H., Hohl C. M., Robitaille P. M., Jones L. R. Response of failing canine and human heart cells to beta 2-adrenergic stimulation. Circulation. 1995 Sep 15;92(6):1612–1618. doi: 10.1161/01.cir.92.6.1612. [DOI] [PubMed] [Google Scholar]
  2. Buxton I. L., Brunton L. L. Beta-adrenergic receptor subtypes and subcellular compartmentation of cyclic AMP and cyclic AMP-dependent protein kinase in rabbit cardiomyocytes. Biochem Int. 1985 Aug;11(2):137–144. [PubMed] [Google Scholar]
  3. Cachelin A. B., de Peyer J. E., Kokubun S., Reuter H. Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature. 1983 Aug 4;304(5925):462–464. doi: 10.1038/304462a0. [DOI] [PubMed] [Google Scholar]
  4. Coghlan V. M., Perrino B. A., Howard M., Langeberg L. K., Hicks J. B., Gallatin W. M., Scott J. D. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science. 1995 Jan 6;267(5194):108–111. doi: 10.1126/science.7528941. [DOI] [PubMed] [Google Scholar]
  5. Daaka Y., Luttrell L. M., Lefkowitz R. J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997 Nov 6;390(6655):88–91. doi: 10.1038/36362. [DOI] [PubMed] [Google Scholar]
  6. Gao T., Yatani A., Dell'Acqua M. L., Sako H., Green S. A., Dascal N., Scott J. D., Hosey M. M. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron. 1997 Jul;19(1):185–196. doi: 10.1016/s0896-6273(00)80358-x. [DOI] [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  8. Gray P. C., Johnson B. D., Westenbroek R. E., Hays L. G., Yates J. R., 3rd, Scheuer T., Catterall W. A., Murphy B. J. Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron. 1998 May;20(5):1017–1026. doi: 10.1016/s0896-6273(00)80482-1. [DOI] [PubMed] [Google Scholar]
  9. Gupta R. C., Neumann J., Boknik P., Watanabe A. M. M2-specific muscarinic cholinergic receptor-mediated inhibition of cardiac regulatory protein phosphorylation. Am J Physiol. 1994 Mar;266(3 Pt 2):H1138–H1144. doi: 10.1152/ajpheart.1994.266.3.H1138. [DOI] [PubMed] [Google Scholar]
  10. Hartzell H. C., Fischmeister R. Direct regulation of cardiac Ca2+ channels by G proteins: neither proven nor necessary? Trends Pharmacol Sci. 1992 Oct;13(10):380–385. doi: 10.1016/0165-6147(92)90117-o. [DOI] [PubMed] [Google Scholar]
  11. Hartzell H. C., Méry P. F., Fischmeister R., Szabo G. Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature. 1991 Jun 13;351(6327):573–576. doi: 10.1038/351573a0. [DOI] [PubMed] [Google Scholar]
  12. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  13. Hirano Y., Suzuki K., Yamawake N., Hiraoka M. Multiple kinetic effects of beta-adrenergic stimulation on single cardiac L-type Ca channels. Am J Physiol. 1994 Jun;266(6 Pt 1):C1714–C1721. doi: 10.1152/ajpcell.1994.266.6.C1714. [DOI] [PubMed] [Google Scholar]
  14. Isshiki M., Anderson R. G. Calcium signal transduction from caveolae. Cell Calcium. 1999 Nov;26(5):201–208. doi: 10.1054/ceca.1999.0073. [DOI] [PubMed] [Google Scholar]
  15. Jurevicius J., Fischmeister R. cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):295–299. doi: 10.1073/pnas.93.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katada T., Kusakabe K., Oinuma M., Ui M. A novel mechanism for the inhibition of adenylate cyclase via inhibitory GTP-binding proteins. Calmodulin-dependent inhibition of the cyclase catalyst by the beta gamma-subunits of GTP-binding proteins. J Biol Chem. 1987 Sep 5;262(25):11897–11900. [PubMed] [Google Scholar]
  17. Kuschel M., Zhou Y. Y., Cheng H., Zhang S. J., Chen Y., Lakatta E. G., Xiao R. P. G(i) protein-mediated functional compartmentalization of cardiac beta(2)-adrenergic signaling. J Biol Chem. 1999 Jul 30;274(31):22048–22052. doi: 10.1074/jbc.274.31.22048. [DOI] [PubMed] [Google Scholar]
  18. Kuschel M., Zhou Y. Y., Spurgeon H. A., Bartel S., Karczewski P., Zhang S. J., Krause E. G., Lakatta E. G., Xiao R. P. beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation. 1999 May 11;99(18):2458–2465. doi: 10.1161/01.cir.99.18.2458. [DOI] [PubMed] [Google Scholar]
  19. Kuznetsov V., Pak E., Robinson R. B., Steinberg S. F. Beta 2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes. Circ Res. 1995 Jan;76(1):40–52. doi: 10.1161/01.res.76.1.40. [DOI] [PubMed] [Google Scholar]
  20. Levy M. N., Martin P. J., Stuesse S. L. Neural regulation of the heart beat. Annu Rev Physiol. 1981;43:443–453. doi: 10.1146/annurev.ph.43.030181.002303. [DOI] [PubMed] [Google Scholar]
  21. Mattera R., Graziano M. P., Yatani A., Zhou Z., Graf R., Codina J., Birnbaumer L., Gilman A. G., Brown A. M. Splice variants of the alpha subunit of the G protein Gs activate both adenylyl cyclase and calcium channels. Science. 1989 Feb 10;243(4892):804–807. doi: 10.1126/science.2536957. [DOI] [PubMed] [Google Scholar]
  22. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  23. Minneman K. P., Hedberg A., Molinoff P. B. Comparison of beta adrenergic receptor subtypes in mammalian tissues. J Pharmacol Exp Ther. 1979 Dec;211(3):502–508. [PubMed] [Google Scholar]
  24. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  25. Oinuma M., Katada T., Ui M. A new GTP-binding protein in differentiated human leukemic (HL-60) cells serving as the specific substrate of islet-activating protein, pertussis toxin. J Biol Chem. 1987 Jun 15;262(17):8347–8353. [PubMed] [Google Scholar]
  26. Raymond J. R. Multiple mechanisms of receptor-G protein signaling specificity. Am J Physiol. 1995 Aug;269(2 Pt 2):F141–F158. doi: 10.1152/ajprenal.1995.269.2.F141. [DOI] [PubMed] [Google Scholar]
  27. Sako Y., Kusumi A. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol. 1994 Jun;125(6):1251–1264. doi: 10.1083/jcb.125.6.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schröder F., Herzig S. Effects of beta2-adrenergic stimulation on single-channel gating of rat cardiac L-type Ca2+ channels. Am J Physiol. 1999 Mar;276(3 Pt 2):H834–H843. doi: 10.1152/ajpheart.1999.276.3.H834. [DOI] [PubMed] [Google Scholar]
  29. Schwencke C., Yamamoto M., Okumura S., Toya Y., Kim S. J., Ishikawa Y. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling in caveolae. Mol Endocrinol. 1999 Jul;13(7):1061–1070. doi: 10.1210/mend.13.7.0304. [DOI] [PubMed] [Google Scholar]
  30. Scott J. D. Dissection of protein kinase and phosphatase targeting interactions. Soc Gen Physiol Ser. 1997;52:227–239. [PubMed] [Google Scholar]
  31. Skeberdis V. A., Jurevicius J., Fischmeister R. Pharmacological characterization of the receptors involved in the beta-adrenoceptor-mediated stimulation of the L-type Ca2+ current in frog ventricular myocytes. Br J Pharmacol. 1997 Aug;121(7):1277–1286. doi: 10.1038/sj.bjp.0701268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Skeberdis V. A., Jurevicius J., Fischmeister a. R. Beta-2 adrenergic activation of L-type Ca++ current in cardiac myocytes. J Pharmacol Exp Ther. 1997 Nov;283(2):452–461. [PubMed] [Google Scholar]
  33. Soejima M., Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch. 1984 Apr;400(4):424–431. doi: 10.1007/BF00587544. [DOI] [PubMed] [Google Scholar]
  34. Wong Y. H., Federman A., Pace A. M., Zachary I., Evans T., Pouysségur J., Bourne H. R. Mutant alpha subunits of Gi2 inhibit cyclic AMP accumulation. Nature. 1991 May 2;351(6321):63–65. doi: 10.1038/351063a0. [DOI] [PubMed] [Google Scholar]
  35. Xiao R. P., Avdonin P., Zhou Y. Y., Cheng H., Akhter S. A., Eschenhagen T., Lefkowitz R. J., Koch W. J., Lakatta E. G. Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res. 1999 Jan 8;84(1):43–52. doi: 10.1161/01.res.84.1.43. [DOI] [PubMed] [Google Scholar]
  36. Xiao R. P., Hohl C., Altschuld R., Jones L., Livingston B., Ziman B., Tantini B., Lakatta E. G. Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem. 1994 Jul 22;269(29):19151–19156. [PubMed] [Google Scholar]
  37. Xiao R. P., Ji X., Lakatta E. G. Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol. 1995 Feb;47(2):322–329. [PubMed] [Google Scholar]
  38. Xiao R. P., Lakatta E. G. Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res. 1993 Aug;73(2):286–300. doi: 10.1161/01.res.73.2.286. [DOI] [PubMed] [Google Scholar]
  39. Xiao R. P., Tomhave E. D., Wang D. J., Ji X., Boluyt M. O., Cheng H., Lakatta E. G., Koch W. J. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. 1998 Mar 15;101(6):1273–1282. doi: 10.1172/JCI1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yatani A., Codina J., Imoto Y., Reeves J. P., Birnbaumer L., Brown A. M. A G protein directly regulates mammalian cardiac calcium channels. Science. 1987 Nov 27;238(4831):1288–1292. doi: 10.1126/science.2446390. [DOI] [PubMed] [Google Scholar]
  41. Yatani A., Imoto Y., Codina J., Hamilton S. L., Brown A. M., Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem. 1988 Jul 15;263(20):9887–9895. [PubMed] [Google Scholar]
  42. Yue D. T., Herzig S., Marban E. Beta-adrenergic stimulation of calcium channels occurs by potentiation of high-activity gating modes. Proc Natl Acad Sci U S A. 1990 Jan;87(2):753–757. doi: 10.1073/pnas.87.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhang S. J., Cheng H., Zhou Y. Y., Wang D. J., Zhu W., Ziman B., Spurgoen H., Lefkowitz R. J., Lakatta E. G., Koch W. J. Inhibition of spontaneous beta 2-adrenergic activation rescues beta 1-adrenergic contractile response in cardiomyocytes overexpressing beta 2-adrenoceptor. J Biol Chem. 2000 Jul 14;275(28):21773–21779. doi: 10.1074/jbc.M909484199. [DOI] [PubMed] [Google Scholar]
  44. Zhou Y. Y., Cheng H., Bogdanov K. Y., Hohl C., Altschuld R., Lakatta E. G., Xiao R. P. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling. Am J Physiol. 1997 Sep;273(3 Pt 2):H1611–H1618. doi: 10.1152/ajpheart.1997.273.3.H1611. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES