Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2624–2631. doi: 10.1016/S0006-3495(00)76501-5

PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

M Roux 1, V Beswick 1, Y M Coïc 1, T Huynh-Dinh 1, A Sanson 1, J M Neumann 1
PMCID: PMC1301143  PMID: 11053135

Abstract

PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups.

Full Text

The Full Text of this article is available as a PDF (106.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu H., Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry. 1981 Dec 22;20(26):7366–7373. doi: 10.1021/bi00529a007. [DOI] [PubMed] [Google Scholar]
  2. Beswick V., Guerois R., Cordier-Ochsenbein F., Coïc Y. M., Tam H. D., Tostain J., Noël J. P., Sanson A., Neumann J. M. Dodecylphosphocholine micelles as a membrane-like environment: new results from NMR relaxation and paramagnetic relaxation enhancement analysis. Eur Biophys J. 1999;28(1):48–58. doi: 10.1007/s002490050182. [DOI] [PubMed] [Google Scholar]
  3. Beswick V., Roux M., Navarre C., Coïc Y. M., Huynh-Dinh T., Goffeau A., Sanson A., Neumann J. M. 1H- and 2H-NMR studies of a fragment of PMP1, a regulatory subunit associated with the yeast plasma membrane H(+)-ATPase. Conformational properties and lipid-peptide interactions. Biochimie. 1998 May-Jun;80(5-6):451–459. doi: 10.1016/s0300-9084(00)80012-7. [DOI] [PubMed] [Google Scholar]
  4. Brown M. F., Seelig J. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry. 1978 Jan 24;17(2):381–384. doi: 10.1021/bi00595a029. [DOI] [PubMed] [Google Scholar]
  5. Carbone M. A., Macdonald P. M. Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: (31)P and (2)H NMR spectroscopic evidence. Biochemistry. 1996 Mar 19;35(11):3368–3378. doi: 10.1021/bi952349i. [DOI] [PubMed] [Google Scholar]
  6. Davis J. H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1979 Sep;27(3):339–358. doi: 10.1016/S0006-3495(79)85222-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis J. H., Nichol C. P., Weeks G., Bloom M. Study of the cytoplasmic and outer membranes of Escherichia coli by deuterium magnetic resonance. Biochemistry. 1979 May 15;18(10):2103–2112. doi: 10.1021/bi00577a041. [DOI] [PubMed] [Google Scholar]
  8. Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
  9. Devaux P. F., Hoatson G. L., Favre E., Fellmann P., Farren B., MacKay A. L., Bloom M. Interaction of cytochrome c with mixed dimyristoylphosphatidylcholine-dimyristoylphosphatidylserine bilayers: a deuterium nuclear magnetic resonance study. Biochemistry. 1986 Jul 1;25(13):3804–3812. doi: 10.1021/bi00361a011. [DOI] [PubMed] [Google Scholar]
  10. Folch-Pi J., Stoffyn P. J. Proteolipids from membrane systems. Ann N Y Acad Sci. 1972 Jun 20;195:86–107. [PubMed] [Google Scholar]
  11. Jordi W., de Kroon A. I., Killian J. A., de Kruijff B. The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A 2H and 31P NMR study. Biochemistry. 1990 Mar 6;29(9):2312–2321. doi: 10.1021/bi00461a015. [DOI] [PubMed] [Google Scholar]
  12. Kurzchalia T. V., Parton R. G. Membrane microdomains and caveolae. Curr Opin Cell Biol. 1999 Aug;11(4):424–431. doi: 10.1016/s0955-0674(99)80061-1. [DOI] [PubMed] [Google Scholar]
  13. Murray D., Arbuzova A., Hangyás-Mihályné G., Gambhir A., Ben-Tal N., Honig B., McLaughlin S. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys J. 1999 Dec;77(6):3176–3188. doi: 10.1016/S0006-3495(99)77148-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Navarre C., Catty P., Leterme S., Dietrich F., Goffeau A. Two distinct genes encode small isoproteolipids affecting plasma membrane H(+)-ATPase activity of Saccharomyces cerevisiae. J Biol Chem. 1994 Aug 19;269(33):21262–21268. [PubMed] [Google Scholar]
  15. Navarre C., Ghislain M., Leterme S., Ferroud C., Dufour J. P., Goffeau A. Purification and complete sequence of a small proteolipid associated with the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 25;267(9):6425–6428. [PubMed] [Google Scholar]
  16. Newton A. C., Johnson J. E. Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta. 1998 Aug 21;1376(2):155–172. doi: 10.1016/s0304-4157(98)00003-3. [DOI] [PubMed] [Google Scholar]
  17. Roux M., Bloom M. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. Biochemistry. 1990 Jul 31;29(30):7077–7089. doi: 10.1021/bi00482a019. [DOI] [PubMed] [Google Scholar]
  18. Roux M., Bloom M. Calcium binding by phosphatidylserine headgroups. Deuterium NMR study. Biophys J. 1991 Jul;60(1):38–44. doi: 10.1016/S0006-3495(91)82028-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sabra M. C., Mouritsen O. G. Steady-state compartmentalization of lipid membranes by active proteins. Biophys J. 1998 Feb;74(2 Pt 1):745–752. doi: 10.1016/S0006-3495(98)73999-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saurel O., Cézanne L., Milon A., Tocanne J. F., Demange P. Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study. Biochemistry. 1998 Feb 3;37(5):1403–1410. doi: 10.1021/bi971484n. [DOI] [PubMed] [Google Scholar]
  21. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  22. Simmerman H. K., Jones L. R. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. 1998 Oct;78(4):921–947. doi: 10.1152/physrev.1998.78.4.921. [DOI] [PubMed] [Google Scholar]
  23. Watts A. Solid-state NMR approaches for studying the interaction of peptides and proteins with membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):297–318. doi: 10.1016/s0304-4157(98)00012-4. [DOI] [PubMed] [Google Scholar]
  24. White S. H., Wimley W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta. 1998 Nov 10;1376(3):339–352. doi: 10.1016/s0304-4157(98)00021-5. [DOI] [PubMed] [Google Scholar]
  25. Zinser E., Daum G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast. 1995 May;11(6):493–536. doi: 10.1002/yea.320110602. [DOI] [PubMed] [Google Scholar]
  26. Zwaal R. F., Comfurius P., Bevers E. M. Lipid-protein interactions in blood coagulation. Biochim Biophys Acta. 1998 Nov 10;1376(3):433–453. doi: 10.1016/s0304-4157(98)00018-5. [DOI] [PubMed] [Google Scholar]
  27. de Kroon A. I., Killian J. A., de Gier J., de Kruijff B. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the "phospholipid headgroup electrometer" concept to phosphatidylserine. Biochemistry. 1991 Jan 29;30(4):1155–1162. doi: 10.1021/bi00218a038. [DOI] [PubMed] [Google Scholar]
  28. van Klompenburg W., de Kruijff B. The role of anionic lipids in protein insertion and translocation in bacterial membranes. J Membr Biol. 1998 Mar 1;162(1):1–7. doi: 10.1007/s002329900336. [DOI] [PubMed] [Google Scholar]
  29. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES