Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2632–2643. doi: 10.1016/S0006-3495(00)76502-7

Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains.

A Polozova 1, B J Litman 1
PMCID: PMC1301144  PMID: 11053136

Abstract

Bovine rhodopsin was reconstituted into mixtures of didocosahexaenoylphosphatidylcholine (di22:6-PC), dipalmitoylphosphatidylcholine (di16:0-PC), sn-1-palmitoyl-sn-2-docosahexaenoylphosphatidylcholine (16:0, 22:6-PC) and cholesterol. Rhodopsin denaturation was examined by using high-sensitivity differential scanning calorimetry. The unfolding temperature was increased at lower levels of lipid unsaturation, but the highest temperature was detected for native disk membranes: di22:6-PC < 16:0,22:6-PC < di16:0,18:1-PC < native disks. The incorporation of 30 mol% of cholesterol resulted in 2-4 degrees C increase of denaturation temperature in all reconstituted systems examined. From the analysis of van't Hoff's and calorimetric enthalpies, it was concluded that the presence of cholesterol in di22:6-PC-containing bilayers induces a level of cooperativity in rhodopsin unfolding. Fluorescence resonance energy transfer (FRET), using lipids labeled at the headgroup with pyrene (Py) as donors and rhodopsin retinal group as acceptor of fluorescence, was used to study rhodopsin association with lipids. Higher FRET efficiencies detected for di22:6-PE-Py, compared to di16:0-PE-Py, in mixed di22:6-PC-di16:0-PC-cholesterol bilayers, indicate preferential segregation of rhodopsin with polyunsaturated lipids. The effective range of the rhodopsin-lipid interactions facilitating cluster formation exceeds two adjacent lipid layers. In similar mixed bilayers containing no cholesterol, cluster formation was absent at temperatures above lipid phase transition, indicating a crucial role of cholesterol in microdomain formation.

Full Text

The Full Text of this article is available as a PDF (147.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. E., Landis D. J., Dudley P. A. Essential fatty acid deficiency and renewal of rod outer segments in the albino rat. Invest Ophthalmol. 1976 Mar;15(3):232–236. [PubMed] [Google Scholar]
  2. Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  3. Brzustowicz M. R., Stillwell W., Wassall S. R. Molecular organization of cholesterol in polyunsaturated phospholipid membranes: a solid state 2H NMR investigation. FEBS Lett. 1999 May 21;451(2):197–202. doi: 10.1016/s0014-5793(99)00567-0. [DOI] [PubMed] [Google Scholar]
  4. Christensen H., Garton N. J., Horobin R. W., Minnikin D. E., Barer M. R. Lipid domains of mycobacteria studied with fluorescent molecular probes. Mol Microbiol. 1999 Mar;31(5):1561–1572. doi: 10.1046/j.1365-2958.1999.01304.x. [DOI] [PubMed] [Google Scholar]
  5. Cone R. A. Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972 Mar 15;236(63):39–43. doi: 10.1038/newbio236039a0. [DOI] [PubMed] [Google Scholar]
  6. Dale R. E., Eisinger J., Blumberg W. E. The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J. 1979 May;26(2):161–193. doi: 10.1016/S0006-3495(79)85243-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dumas F., Sperotto M. M., Lebrun M. C., Tocanne J. F., Mouritsen O. G. Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. Biophys J. 1997 Oct;73(4):1940–1953. doi: 10.1016/S0006-3495(97)78225-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engelman D. M., Rothman J. E. The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972 Jun 10;247(11):3694–3697. [PubMed] [Google Scholar]
  9. Ferretti A., Knijn A., Iorio E., Pulciani S., Giambenedetti M., Molinari A., Meschini S., Stringaro A., Calcabrini A., Freitas I. Biophysical and structural characterization of 1H-NMR-detectable mobile lipid domains in NIH-3T3 fibroblasts. Biochim Biophys Acta. 1999 Jun 10;1438(3):329–348. doi: 10.1016/s1388-1981(99)00071-2. [DOI] [PubMed] [Google Scholar]
  10. Friedrichson T., Kurzchalia T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature. 1998 Aug 20;394(6695):802–805. doi: 10.1038/29570. [DOI] [PubMed] [Google Scholar]
  11. Fung B. K., Stryer L. Surface density determination in membranes by fluorescence energy transfer. Biochemistry. 1978 Nov 28;17(24):5241–5248. doi: 10.1021/bi00617a025. [DOI] [PubMed] [Google Scholar]
  12. Galla H. J., Sackmann E. Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochim Biophys Acta. 1974 Feb 26;339(1):103–115. doi: 10.1016/0005-2736(74)90336-8. [DOI] [PubMed] [Google Scholar]
  13. Han M., Smith S. O. NMR constraints on the location of the retinal chromophore in rhodopsin and bathorhodopsin. Biochemistry. 1995 Jan 31;34(4):1425–1432. doi: 10.1021/bi00004a037. [DOI] [PubMed] [Google Scholar]
  14. Harder T., Scheiffele P., Verkade P., Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 1998 May 18;141(4):929–942. doi: 10.1083/jcb.141.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hooper N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol. 1999 Apr-Jun;16(2):145–156. doi: 10.1080/096876899294607. [DOI] [PubMed] [Google Scholar]
  16. Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry. 1998 Dec 8;37(49):17299–17308. doi: 10.1021/bi980078g. [DOI] [PubMed] [Google Scholar]
  17. Hwang J., Gheber L. A., Margolis L., Edidin M. Domains in cell plasma membranes investigated by near-field scanning optical microscopy. Biophys J. 1998 May;74(5):2184–2190. doi: 10.1016/S0006-3495(98)77927-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ipsen J. H., Mouritsen O. G., Bloom M. Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. Biophys J. 1990 Mar;57(3):405–412. doi: 10.1016/S0006-3495(90)82557-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jackson M. L., Litman B. J. Rhodopsin-egg phosphatidylcholine reconstitution by an octyl glucoside dilution procedure. Biochim Biophys Acta. 1985 Jan 25;812(2):369–376. doi: 10.1016/0005-2736(85)90311-6. [DOI] [PubMed] [Google Scholar]
  20. Jackson M. L., Litman B. J. Rhodopsin-phospholipid reconstitution by dialysis removal of octyl glucoside. Biochemistry. 1982 Oct 26;21(22):5601–5608. doi: 10.1021/bi00265a033. [DOI] [PubMed] [Google Scholar]
  21. Khan S. M., Bolen W., Hargrave P. A., Santoro M. M., McDowell J. H. Differential scanning calorimetry of bovine rhodopsin in rod-outer-segment disk membranes. Eur J Biochem. 1991 Aug 15;200(1):53–59. doi: 10.1111/j.1432-1033.1991.tb21047.x. [DOI] [PubMed] [Google Scholar]
  22. Kinnunen P. K., Kõiv A., Lehtonen J. Y., Rytömaa M., Mustonen P. Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids. 1994 Sep 6;73(1-2):181–207. doi: 10.1016/0009-3084(94)90181-3. [DOI] [PubMed] [Google Scholar]
  23. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krebs A., Villa C., Edwards P. C., Schertler G. F. Characterisation of an improved two-dimensional p22121 crystal from bovine rhodopsin. J Mol Biol. 1998 Oct 9;282(5):991–1003. doi: 10.1006/jmbi.1998.2070. [DOI] [PubMed] [Google Scholar]
  25. Kusumi A., Hyde J. S. Spin-label saturation-transfer electron spin resonance detection of transient association of rhodopsin in reconstituted membranes. Biochemistry. 1982 Nov 9;21(23):5978–5983. doi: 10.1021/bi00266a039. [DOI] [PubMed] [Google Scholar]
  26. LIEBMAN P. A. In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys J. 1962 Mar;2:161–178. doi: 10.1016/s0006-3495(62)86847-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Litman B. J., Mitchell D. C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids. 1996 Mar;31 (Suppl):S193–S197. doi: 10.1007/BF02637075. [DOI] [PubMed] [Google Scholar]
  28. Litman B. J. Purification of rhodopsin by concanavalin A affinity chromatography. Methods Enzymol. 1982;81:150–153. doi: 10.1016/s0076-6879(82)81025-2. [DOI] [PubMed] [Google Scholar]
  29. Marsh D. Lipid-protein interactions and heterogeneous lipid distribution in membranes. Mol Membr Biol. 1995 Jan-Mar;12(1):59–64. doi: 10.3109/09687689509038496. [DOI] [PubMed] [Google Scholar]
  30. Masserini M., Palestini P., Pitto M. Glycolipid-enriched caveolae and caveolae-like domains in the nervous system. J Neurochem. 1999 Jul;73(1):1–11. doi: 10.1046/j.1471-4159.1999.0730001.x. [DOI] [PubMed] [Google Scholar]
  31. Miljanich G. P., Brown M. F., Mabrey-Gaud S., Dratz E. A., Sturtevant J. M. Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids. J Membr Biol. 1985;85(1):79–86. doi: 10.1007/BF01872007. [DOI] [PubMed] [Google Scholar]
  32. Miljanich G. P., Sklar L. A., White D. L., Dratz E. A. Disaturated and dipolyunsaturated phospholipids in the bovine retinal rod outer segment disk membrane. Biochim Biophys Acta. 1979 Apr 4;552(2):294–306. doi: 10.1016/0005-2736(79)90284-0. [DOI] [PubMed] [Google Scholar]
  33. Mitchell D. C., Gawrisch K., Litman B. J., Salem N., Jr Why is docosahexaenoic acid essential for nervous system function? Biochem Soc Trans. 1998 Aug;26(3):365–370. doi: 10.1042/bst0260365. [DOI] [PubMed] [Google Scholar]
  34. Mitchell D. C., Litman B. J. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys J. 1998 Aug;75(2):896–908. doi: 10.1016/S0006-3495(98)77578-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mitchell D. C., Straume M., Litman B. J. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium. Biochemistry. 1992 Jan 28;31(3):662–670. doi: 10.1021/bi00118a005. [DOI] [PubMed] [Google Scholar]
  36. Petrache H. I., Tu K., Nagle J. F. Analysis of simulated NMR order parameters for lipid bilayer structure determination. Biophys J. 1999 May;76(5):2479–2487. doi: 10.1016/S0006-3495(99)77403-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ryba N. J., Marsh D. Protein rotational diffusion and lipid/protein interactions in recombinants of bovine rhodopsin with saturated diacylphosphatidylcholines of different chain lengths studied by conventional and saturation-transfer electron spin resonance. Biochemistry. 1992 Aug 25;31(33):7511–7518. doi: 10.1021/bi00148a011. [DOI] [PubMed] [Google Scholar]
  38. Shnyrov V. L., Berman A. L. Calorimetric study of thermal denaturation of vertebrate visual pigments. Biomed Biochim Acta. 1988;47(4-5):355–362. [PubMed] [Google Scholar]
  39. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  40. Stone W. L., Farnsworth C. C., Dratz E. A. A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Exp Eye Res. 1979 Apr;28(4):387–397. doi: 10.1016/0014-4835(79)90114-3. [DOI] [PubMed] [Google Scholar]
  41. Thomas D. D., Stryer L. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes. J Mol Biol. 1982 Jan 5;154(1):145–157. doi: 10.1016/0022-2836(82)90422-3. [DOI] [PubMed] [Google Scholar]
  42. Unger V. M., Hargrave P. A., Baldwin J. M., Schertler G. F. Arrangement of rhodopsin transmembrane alpha-helices. Nature. 1997 Sep 11;389(6647):203–206. doi: 10.1038/38316. [DOI] [PubMed] [Google Scholar]
  43. Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
  44. Welti R., Glaser M. Lipid domains in model and biological membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):121–137. doi: 10.1016/0009-3084(94)90178-3. [DOI] [PubMed] [Google Scholar]
  45. Williams E. E., Jenski L. J., Stillwell W. Docosahexaenoic acid (DHA) alters the structure and composition of membranous vesicles exfoliated from the surface of a murine leukemia cell line. Biochim Biophys Acta. 1998 May 28;1371(2):351–362. doi: 10.1016/s0005-2736(98)00039-x. [DOI] [PubMed] [Google Scholar]
  46. Zuvic-Butorac M., Müller P., Pomorski T., Libera J., Herrmann A., Schara M. Lipid domains in the exoplasmic and cytoplasmic leaflet of the human erythrocyte membrane: a spin label approach. Eur Biophys J. 1999;28(4):302–311. doi: 10.1007/s002490050212. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES