Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2667–2681. doi: 10.1016/S0006-3495(00)76505-2

Perturbed equilibria of myosin binding in airway smooth muscle: bond-length distributions, mechanics, and ATP metabolism.

S M Mijailovich 1, J P Butler 1, J J Fredberg 1
PMCID: PMC1301147  PMID: 11053139

Abstract

We carried out a detailed mathematical analysis of the effects of length fluctuations on the dynamically evolving cross-bridge distributions, simulating those that occur in airway smooth muscle during breathing. We used the latch regulation scheme of Hai and Murphy (Am. J. Physiol. Cell Physiol. 255:C86-C94, 1988) integrated with Huxley's sliding filament theory of muscle contraction. This analysis showed that imposed length fluctuations decrease the mean number of attached bridges, depress muscle force and stiffness, and increase force-length hysteresis. At frequencies >0.1 Hz, the bond-length distribution of slowly cycling latch bridges changed little over the stretch cycle and contributed almost elastically to muscle force, but the rapidly cycling cross-bridge distribution changed substantially and dominated the hysteresis. By contrast, at frequencies <0.033 Hz this behavior was reversed: the rapid cycling cross-bridge distribution changed little, effectively functioning as a constant force generator, while the latch bridge bond distribution changed substantially and dominated the stiffness and hysteresis. The analysis showed the dissociation of force/length hysteresis and cross-bridge cycling rates when strain amplitude exceeds 3%; that is, there is only a weak coupling between net external mechanical work and the ATP consumption required for cycling cross-bridges during the oscillatory steady state. Although these results are specific to airway smooth muscle, the approach generalizes to other smooth muscles subjected to cyclic length fluctuations.

Full Text

The Full Text of this article is available as a PDF (543.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eisenberg E., Hill T. L. Muscle contraction and free energy transduction in biological systems. Science. 1985 Mar 1;227(4690):999–1006. doi: 10.1126/science.3156404. [DOI] [PubMed] [Google Scholar]
  2. Fredberg J. J., Inouye D. S., Mijailovich S. M., Butler J. P. Perturbed equilibrium of myosin binding in airway smooth muscle and its implications in bronchospasm. Am J Respir Crit Care Med. 1999 Mar;159(3):959–967. doi: 10.1164/ajrccm.159.3.9804060. [DOI] [PubMed] [Google Scholar]
  3. Fredberg J. J., Inouye D., Miller B., Nathan M., Jafari S., Raboudi S. H., Butler J. P., Shore S. A. Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am J Respir Crit Care Med. 1997 Dec;156(6):1752–1759. doi: 10.1164/ajrccm.156.6.9611016. [DOI] [PubMed] [Google Scholar]
  4. Fredberg J. J., Jones K. A., Nathan M., Raboudi S., Prakash Y. S., Shore S. A., Butler J. P., Sieck G. C. Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J Appl Physiol (1985) 1996 Dec;81(6):2703–2712. doi: 10.1152/jappl.1996.81.6.2703. [DOI] [PubMed] [Google Scholar]
  5. Fredberg J. J., Stamenovic D. On the imperfect elasticity of lung tissue. J Appl Physiol (1985) 1989 Dec;67(6):2408–2419. doi: 10.1152/jappl.1989.67.6.2408. [DOI] [PubMed] [Google Scholar]
  6. Gunst S. J., Meiss R. A., Wu M. F., Rowe M. Mechanisms for the mechanical plasticity of tracheal smooth muscle. Am J Physiol. 1995 May;268(5 Pt 1):C1267–C1276. doi: 10.1152/ajpcell.1995.268.5.C1267. [DOI] [PubMed] [Google Scholar]
  7. Gunst S. J., Stropp J. Q., Service J. Mechanical modulation of pressure-volume characteristics of contracted canine airways in vitro. J Appl Physiol (1985) 1990 May;68(5):2223–2229. doi: 10.1152/jappl.1990.68.5.2223. [DOI] [PubMed] [Google Scholar]
  8. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  9. Hai C. M. Length-dependent myosin phosphorylation and contraction of arterial smooth muscle. Pflugers Arch. 1991 Jul;418(6):564–571. doi: 10.1007/BF00370572. [DOI] [PubMed] [Google Scholar]
  10. Hai C. M., Murphy R. A. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol. 1988 Jan;254(1 Pt 1):C99–106. doi: 10.1152/ajpcell.1988.254.1.C99. [DOI] [PubMed] [Google Scholar]
  11. Hai C. M., Murphy R. A. Regulation of shortening velocity by cross-bridge phosphorylation in smooth muscle. Am J Physiol. 1988 Jul;255(1 Pt 1):C86–C94. doi: 10.1152/ajpcell.1988.255.1.C86. [DOI] [PubMed] [Google Scholar]
  12. Harry J. D., Ward A. W., Heglund N. C., Morgan D. L., McMahon T. A. Cross-bridge cycling theories cannot explain high-speed lengthening behavior in frog muscle. Biophys J. 1990 Feb;57(2):201–208. doi: 10.1016/S0006-3495(90)82523-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hughes J. M., Hoppin F. G., Jr, Mead J. Effect of lung inflation on bronchial length and diameter in excised lungs. J Appl Physiol. 1972 Jan;32(1):25–35. doi: 10.1152/jappl.1972.32.1.25. [DOI] [PubMed] [Google Scholar]
  14. Klemt P., Peiper U., Speden R. N., Zilker F. The kinetics of post-vibration tension recovery of the isolated rat portal vein. J Physiol. 1981 Mar;312:281–296. doi: 10.1113/jphysiol.1981.sp013629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mehta D., Wu M. F., Gunst S. J. Role of contractile protein activation in the length-dependent modulation of tracheal smooth muscle force. Am J Physiol. 1996 Jan;270(1 Pt 1):C243–C252. doi: 10.1152/ajpcell.1996.270.1.C243. [DOI] [PubMed] [Google Scholar]
  16. Mijailovich S. M., Fredberg J. J., Butler J. P. On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness. Biophys J. 1996 Sep;71(3):1475–1484. doi: 10.1016/S0006-3495(96)79348-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murphy R. A. What is special about smooth muscle? The significance of covalent crossbridge regulation. FASEB J. 1994 Mar 1;8(3):311–318. doi: 10.1096/fasebj.8.3.8143937. [DOI] [PubMed] [Google Scholar]
  18. Peiper U., Knipp S. C., Thies B., Henke R. Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle. Pflugers Arch. 1996;432(3 Suppl):R47–R52. [PubMed] [Google Scholar]
  19. Piazzesi G., Lombardi V. A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys J. 1995 May;68(5):1966–1979. doi: 10.1016/S0006-3495(95)80374-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pratusevich V. R., Seow C. Y., Ford L. E. Plasticity in canine airway smooth muscle. J Gen Physiol. 1995 Jan;105(1):73–94. doi: 10.1085/jgp.105.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rack P. M., Westbury D. R. The short range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol. 1974 Jul;240(2):331–350. doi: 10.1113/jphysiol.1974.sp010613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sasaki H., Hoppin F. G., Jr Hysteresis of contracted airway smooth muscle. J Appl Physiol Respir Environ Exerc Physiol. 1979 Dec;47(6):1251–1262. doi: 10.1152/jappl.1979.47.6.1251. [DOI] [PubMed] [Google Scholar]
  23. Seow C. Y., Stephens N. L. Time dependence of series elasticity in tracheal smooth muscle. J Appl Physiol (1985) 1987 Apr;62(4):1556–1561. doi: 10.1152/jappl.1987.62.4.1556. [DOI] [PubMed] [Google Scholar]
  24. Shen X., Wu M. F., Tepper R. S., Gunst S. J. Pharmacological modulation of the mechanical response of airway smooth muscle to length oscillation. J Appl Physiol (1985) 1997 Sep;83(3):739–745. doi: 10.1152/jappl.1997.83.3.739. [DOI] [PubMed] [Google Scholar]
  25. Warner D. O., Gunst S. J. Limitation of maximal bronchoconstriction in living dogs. Am Rev Respir Dis. 1992 Mar;145(3):553–560. doi: 10.1164/ajrccm/145.3.553. [DOI] [PubMed] [Google Scholar]
  26. Yu S. N., Crago P. E., Chiel H. J. A nonisometric kinetic model for smooth muscle. Am J Physiol. 1997 Mar;272(3 Pt 1):C1025–C1039. doi: 10.1152/ajpcell.1997.272.3.C1025. [DOI] [PubMed] [Google Scholar]
  27. Zahalak G. I. A comparison of the mechanical behavior of the cat soleus muscle with a distribution-moment model. J Biomech Eng. 1986 May;108(2):131–140. doi: 10.1115/1.3138592. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES