Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2733–2738. doi: 10.1016/S0006-3495(00)76512-X

A flash photolysis method to characterize hexacoordinate hemoglobin kinetics.

M S Hargrove 1
PMCID: PMC1301154  PMID: 11053146

Abstract

A flash photolysis method is described for analyzing ligand binding to the new and growing group of hemoglobins which are hexacoordinate in the unligated, ferrous state. Simple analysis of a two exponential fit to time courses for CO rebinding at varying CO concentrations yields rate constants for formation and dissociation of the hexacoordinate complex, and the bimolecular rate constant for CO binding. This method was tested with a nonsymbiotic plant hemoglobin from rice for which these values had not previously been determined. For this protein, dissociation and rebinding of the hexacoordinating amino acid side chain, His(73), is rapid and similar to the rate of CO binding at high CO concentrations. These results indicate that hexacoordination must be taken into account when evaluating the affinity of hexacoordinate hemoglobins for ligands.

Full Text

The Full Text of this article is available as a PDF (83.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arredondo-Peter R., Hargrove M. S., Sarath G., Moran J. F., Lohrman J., Olson J. S., Klucas R. V. Rice hemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol. 1997 Nov;115(3):1259–1266. doi: 10.1104/pp.115.3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arredondo-Peter R, Hargrove MS, Moran JF, Sarath G, Klucas RV. Plant hemoglobins . Plant Physiol. 1998 Dec;118(4):1121–1125. doi: 10.1104/pp.118.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Smerdon S. J., Wilkinson A. J., Dou Y., Keenan D., Ikeda-Saito M., Brantley R. E., Jr Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem. 1994 May 13;269(19):13843–13853. [PubMed] [Google Scholar]
  4. Coletta M., Angeletti M., De Sanctis G., Cerroni L., Giardina B., Amiconi G., Ascenzi P. Kinetic evidence for the existence of a rate-limiting step in the reaction of ferric hemoproteins with anionic ligands. Eur J Biochem. 1996 Jan 15;235(1-2):49–53. doi: 10.1111/j.1432-1033.1996.00049.x. [DOI] [PubMed] [Google Scholar]
  5. Couture M., Das T. K., Lee H. C., Peisach J., Rousseau D. L., Wittenberg B. A., Wittenberg J. B., Guertin M. Chlamydomonas chloroplast ferrous hemoglobin. Heme pocket structure and reactions with ligands. J Biol Chem. 1999 Mar 12;274(11):6898–6910. doi: 10.1074/jbc.274.11.6898. [DOI] [PubMed] [Google Scholar]
  6. Couture M., Yeh S. R., Wittenberg B. A., Wittenberg J. B., Ouellet Y., Rousseau D. L., Guertin M. A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11223–11228. doi: 10.1073/pnas.96.20.11223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delgado-Nixon V. M., Gonzalez G., Gilles-Gonzalez M. A. Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry. 2000 Mar 14;39(10):2685–2691. doi: 10.1021/bi991911s. [DOI] [PubMed] [Google Scholar]
  8. Duff S. M., Wittenberg J. B., Hill R. D. Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J Biol Chem. 1997 Jul 4;272(27):16746–16752. doi: 10.1074/jbc.272.27.16746. [DOI] [PubMed] [Google Scholar]
  9. Olson J. S. Stopped-flow, rapid mixing measurements of ligand binding to hemoglobin and red cells. Methods Enzymol. 1981;76:631–651. doi: 10.1016/0076-6879(81)76148-2. [DOI] [PubMed] [Google Scholar]
  10. Sawicki C. A., Morris R. J. Flash photolysis of hemoglobin. Methods Enzymol. 1981;76:667–681. doi: 10.1016/0076-6879(81)76150-0. [DOI] [PubMed] [Google Scholar]
  11. Sowa A. W., Duff S. M., Guy P. A., Hill R. D. Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10317–10321. doi: 10.1073/pnas.95.17.10317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Taylor E. R., Nie X. Z., MacGregor A. W., Hill R. D. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol. 1994 Mar;24(6):853–862. doi: 10.1007/BF00014440. [DOI] [PubMed] [Google Scholar]
  13. Trevaskis B., Watts R. A., Andersson C. R., Llewellyn D. J., Hargrove M. S., Olson J. S., Dennis E. S., Peacock W. J. Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):12230–12234. doi: 10.1073/pnas.94.22.12230. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES