Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2739–2753. doi: 10.1016/S0006-3495(00)76513-1

A systematic study of the vibrational free energies of polypeptides in folded and random states.

B Ma 1, C J Tsai 1, R Nussinov 1
PMCID: PMC1301155  PMID: 11053147

Abstract

Molecular vibrations, especially low frequency motions, may be used as an indication of the rigidity or the flatness of the protein folding energy landscape. We have studied the vibrational properties of native folded as well as random coil structures of more than 60 polypeptides. The picture we obtain allows us to perceive how and why the energy landscape progressively rigidifies while still allowing potential flexibility. Compared with random coil structures, both alpha-helices and beta-hairpins are vibrationally more flexible. The vibrational properties of loop structures are similar to those of the corresponding random coil structures. Inclusion of an alpha-helix tends to rigidify peptides and so-called building blocks of the structure, whereas the addition of a beta-structure has less effect. When small building blocks coalesce to form larger domains, the protein rigidifies. However, some folded native conformations are still found to be vibrationally more flexible than random coil structures, for example, beta(2)-microglobulin and the SH3 domain. Vibrational free energy contributes significantly to the thermodynamics of protein folding and affects the distribution of the conformational substates. We found a weak correlation between the vibrational folding energy and the protein size, consistent with both previous experimental estimates and theoretical partition of the heat capacity change in protein folding.

Full Text

The Full Text of this article is available as a PDF (626.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm E., Baker D. Matching theory and experiment in protein folding. Curr Opin Struct Biol. 1999 Apr;9(2):189–196. doi: 10.1016/S0959-440X(99)80027-X. [DOI] [PubMed] [Google Scholar]
  2. Baldwin R. L., Rose G. D. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem Sci. 1999 Jan;24(1):26–33. doi: 10.1016/s0968-0004(98)01346-2. [DOI] [PubMed] [Google Scholar]
  3. Baldwin R. L., Rose G. D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem Sci. 1999 Feb;24(2):77–83. doi: 10.1016/s0968-0004(98)01345-0. [DOI] [PubMed] [Google Scholar]
  4. Boczko E. M., Brooks C. L., 3rd First-principles calculation of the folding free energy of a three-helix bundle protein. Science. 1995 Jul 21;269(5222):393–396. doi: 10.1126/science.7618103. [DOI] [PubMed] [Google Scholar]
  5. Elber R. Novel methods for molecular dynamics simulations. Curr Opin Struct Biol. 1996 Apr;6(2):232–235. doi: 10.1016/s0959-440x(96)80080-7. [DOI] [PubMed] [Google Scholar]
  6. Forman-Kay J. D. The 'dynamics' in the thermodynamics of binding. Nat Struct Biol. 1999 Dec;6(12):1086–1087. doi: 10.1038/70008. [DOI] [PubMed] [Google Scholar]
  7. Graziano G., Catanzano F., Riccio A., Barone G. A reassessment of the molecular origin of cold denaturation. J Biochem. 1997 Aug;122(2):395–401. doi: 10.1093/oxfordjournals.jbchem.a021766. [DOI] [PubMed] [Google Scholar]
  8. Gursky O., Aleshkov S. Temperature-dependent beta-sheet formation in beta-amyloid Abeta(1-40) peptide in water: uncoupling beta-structure folding from aggregation. Biochim Biophys Acta. 2000 Jan 3;1476(1):93–102. doi: 10.1016/s0167-4838(99)00228-9. [DOI] [PubMed] [Google Scholar]
  9. Ibarra-Molero B., Makhatadze G. I., Sanchez-Ruiz J. M. Cold denaturation of ubiquitin. Biochim Biophys Acta. 1999 Jan 11;1429(2):384–390. doi: 10.1016/s0167-4838(98)00252-0. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa K., Yue K., Dill K. A. Predicting the structures of 18 peptides using Geocore. Protein Sci. 1999 Apr;8(4):716–721. doi: 10.1110/ps.8.4.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kanehisa M. I., Ikegami A. Structural changes and fluctuations of proteins. II. Analysis of the denaturation of globular proteins. Biophys Chem. 1977 Jan;6(2):131–149. doi: 10.1016/0301-4622(77)87003-8. [DOI] [PubMed] [Google Scholar]
  12. Khechinashvili N. N., Janin J., Rodier F. Thermodynamics of the temperature-induced unfolding of globular proteins. Protein Sci. 1995 Jul;4(7):1315–1324. doi: 10.1002/pro.5560040707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kumar S., Ma B., Tsai C. J., Sinha N., Nussinov R. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 2000 Jan;9(1):10–19. doi: 10.1110/ps.9.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lacassie E., Delmas A., Meunier C., Sy D., Trudelle Y. High thermal stability and cold-denaturation of an artificial polypeptide. Int J Pept Protein Res. 1996 Sep;48(3):249–258. doi: 10.1111/j.1399-3011.1996.tb00838.x. [DOI] [PubMed] [Google Scholar]
  15. Lavigne P., Crump M. P., Gagné S. M., Hodges R. S., Kay C. M., Sykes B. D. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. J Mol Biol. 1998 Aug 7;281(1):165–181. doi: 10.1006/jmbi.1998.1914. [DOI] [PubMed] [Google Scholar]
  16. Lazaridis T., Karplus M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science. 1997 Dec 12;278(5345):1928–1931. doi: 10.1126/science.278.5345.1928. [DOI] [PubMed] [Google Scholar]
  17. Lee A. L., Kinnear S. A., Wand A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat Struct Biol. 2000 Jan;7(1):72–77. doi: 10.1038/71280. [DOI] [PubMed] [Google Scholar]
  18. Ma B., Nussinov R. Explicit and implicit water simulations of a beta-hairpin peptide. Proteins. 1999 Oct 1;37(1):73–87. doi: 10.1002/(sici)1097-0134(19991001)37:1<73::aid-prot8>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  19. Makhatadze G. I., Privalov P. L. On the entropy of protein folding. Protein Sci. 1996 Mar;5(3):507–510. doi: 10.1002/pro.5560050312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martins J. C., Zhang W. G., Tartar A., Lazdunski M., Borremans F. A. Solution conformation of leiurotoxin I (scyllatoxin) by 1H nuclear magnetic resonance. Resonance assignment and secondary structure. FEBS Lett. 1990 Jan 29;260(2):249–253. doi: 10.1016/0014-5793(90)80115-y. [DOI] [PubMed] [Google Scholar]
  21. Onuchic J. N., Luthey-Schulten Z., Wolynes P. G. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600. doi: 10.1146/annurev.physchem.48.1.545. [DOI] [PubMed] [Google Scholar]
  22. Panchenko A. R., Luthey-Schulten Z., Wolynes P. G. Foldons, protein structural modules, and exons. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):2008–2013. doi: 10.1073/pnas.93.5.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tidor B., Karplus M. The contribution of vibrational entropy to molecular association. The dimerization of insulin. J Mol Biol. 1994 May 6;238(3):405–414. doi: 10.1006/jmbi.1994.1300. [DOI] [PubMed] [Google Scholar]
  25. Todd M. J., Freire E. The effect of inhibitor binding on the structural stability and cooperativity of the HIV-1 protease. Proteins. 1999 Aug 1;36(2):147–156. doi: 10.1002/(sici)1097-0134(19990801)36:2<147::aid-prot2>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  26. Troyer J. M., Cohen F. E. Protein conformational landscapes: energy minimization and clustering of a long molecular dynamics trajectory. Proteins. 1995 Sep;23(1):97–110. doi: 10.1002/prot.340230111. [DOI] [PubMed] [Google Scholar]
  27. Tsai C. J., Kumar S., Ma B., Nussinov R. Folding funnels, binding funnels, and protein function. Protein Sci. 1999 Jun;8(6):1181–1190. doi: 10.1110/ps.8.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsai C. J., Ma B., Nussinov R. Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9970–9972. doi: 10.1073/pnas.96.18.9970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tsai C. J., Nussinov R. Hydrophobic folding units derived from dissimilar monomer structures and their interactions. Protein Sci. 1997 Jan;6(1):24–42. doi: 10.1002/pro.5560060104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Viguera A. R., Jiménez M. A., Rico M., Serrano L. Conformational analysis of peptides corresponding to beta-hairpins and a beta-sheet that represent the entire sequence of the alpha-spectrin SH3 domain. J Mol Biol. 1996 Jan 26;255(3):507–521. doi: 10.1006/jmbi.1996.0042. [DOI] [PubMed] [Google Scholar]
  31. Williams S., Causgrove T. P., Gilmanshin R., Fang K. S., Callender R. H., Woodruff W. H., Dyer R. B. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry. 1996 Jan 23;35(3):691–697. doi: 10.1021/bi952217p. [DOI] [PubMed] [Google Scholar]
  32. Wintrode P. L., Makhatadze G. I., Privalov P. L. Thermodynamics of ubiquitin unfolding. Proteins. 1994 Mar;18(3):246–253. doi: 10.1002/prot.340180305. [DOI] [PubMed] [Google Scholar]
  33. Zídek L., Novotny M. V., Stone M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol. 1999 Dec;6(12):1118–1121. doi: 10.1038/70057. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES