Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Nov;79(5):2768–2781. doi: 10.1016/S0006-3495(00)76516-7

Distribution of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine/cholesterol monolayers: a model for lipid rafts.

C Yuan 1, L J Johnston 1
PMCID: PMC1301158  PMID: 11053150

Abstract

The distribution of low concentrations of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol monolayers supported on mica has been studied using atomic force microscopy (AFM). The monolayers studied correspond to a pure gel phase and a mixture of liquid-expanded (LE) and liquid-condensed (LC) phases for DPPC and to a single homogeneous liquid-ordered phase for 2:1 DPPC/cholesterol. The addition of 2.5-5% GM1 to phase-separated DPPC monolayers resulted in small round ganglioside-rich microdomains in the center and at the edges of the LC domains. Higher amounts of GM1 (10%) give numerous filaments in the center of the LC domains and larger patches at the edges. A gel phase DPPC monolayer containing GM1 showed large domains containing a network of GM1-rich filaments. The addition of GM1 to a liquid-ordered 2:1 DPPC/cholesterol monolayer gives small, round domains that vary in size from 50 to 150 nm for a range of surface pressures. Larger amounts of GM1 lead to coalescence of the small, round domains to give longer filaments that cover 30-40% of the monolayer surface for 10 mol % GM1. The results indicate that biologically relevant GM1 concentrations lead to submicron-sized domains in a cholesterol-rich liquid-ordered phase that is analogous to that found in detergent-insoluble membrane fractions, and are thought to be important in membrane microdomains or rafts. This demonstrates that AFM studies of model monolayers and bilayers provide a powerful method for the direct detection of microdomains that are too small for study with most other techniques.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. N., Brown D. A., London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997 Sep 9;36(36):10944–10953. doi: 10.1021/bi971167g. [DOI] [PubMed] [Google Scholar]
  2. Bach D., Miller I. R., Sela B. A. Calorimetric studies on various gangliosides and ganglioside-lipid interactions. Biochim Biophys Acta. 1982 Apr 7;686(2):233–239. doi: 10.1016/0005-2736(82)90117-1. [DOI] [PubMed] [Google Scholar]
  3. Bagatolli L. A., Gratton E. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J. 2000 Jan;78(1):290–305. doi: 10.1016/S0006-3495(00)76592-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., London E. Structure and origin of ordered lipid domains in biological membranes. J Membr Biol. 1998 Jul 15;164(2):103–114. doi: 10.1007/s002329900397. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  7. Chi L. F., Anders M., Fuchs H., Johnston R. R., Ringsdorf H. Domain structures in langmuir-blodgett films investigated by atomic force microscopy. Science. 1993 Jan 8;259(5092):213–216. doi: 10.1126/science.259.5092.213. [DOI] [PubMed] [Google Scholar]
  8. Delmelle M., Dufrane S. P., Brasseur R., Ruysschaert J. M. Clustering of gangliosides in phospholipid bilayers. FEBS Lett. 1980 Nov 17;121(1):11–14. doi: 10.1016/0014-5793(80)81254-3. [DOI] [PubMed] [Google Scholar]
  9. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  10. Derry D. M., Wolfe L. S. Gangliosides in isolated neurons and glial cells. Science. 1967 Dec 15;158(3807):1450–1452. doi: 10.1126/science.158.3807.1450. [DOI] [PubMed] [Google Scholar]
  11. Ferraretto A., Pitto M., Palestini P., Masserini M. Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Biochemistry. 1997 Jul 29;36(30):9232–9236. doi: 10.1021/bi970428j. [DOI] [PubMed] [Google Scholar]
  12. Friedrichson T., Kurzchalia T. V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature. 1998 Aug 20;394(6695):802–805. doi: 10.1038/29570. [DOI] [PubMed] [Google Scholar]
  13. Harder T., Scheiffele P., Verkade P., Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 1998 May 18;141(4):929–942. doi: 10.1083/jcb.141.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hirai M., Takizawa T. Intensive extrusion and occlusion of water in ganglioside micelles with thermal reversibility. Biophys J. 1998 Jun;74(6):3010–3014. doi: 10.1016/S0006-3495(98)78008-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hollars C. W., Dunn R. C. Submicron structure in L-alpha-dipalmitoylphosphatidylcholine monolayers and bilayers probed with confocal, atomic force, and near-field microscopy. Biophys J. 1998 Jul;75(1):342–353. doi: 10.1016/S0006-3495(98)77518-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holopainen J. M., Lehtonen J. Y., Kinnunen P. K. Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids. 1997 Aug 8;88(1):1–13. doi: 10.1016/s0009-3084(97)00040-6. [DOI] [PubMed] [Google Scholar]
  17. Hwang J., Tamm L. K., Böhm, Ramalingam T. S., Betzig E., Edidin M. Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy. Science. 1995 Oct 27;270(5236):610–614. doi: 10.1126/science.270.5236.610. [DOI] [PubMed] [Google Scholar]
  18. Jacobson K., Dietrich C. Looking at lipid rafts? Trends Cell Biol. 1999 Mar;9(3):87–91. doi: 10.1016/s0962-8924(98)01495-0. [DOI] [PubMed] [Google Scholar]
  19. Korlach J., Schwille P., Webb W. W., Feigenson G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McIntosh T. J., Simon S. A. Long- and short-range interactions between phospholipid/ganglioside GM1 bilayers. Biochemistry. 1994 Aug 30;33(34):10477–10486. doi: 10.1021/bi00200a032. [DOI] [PubMed] [Google Scholar]
  21. Mehlhorn I. E., Parraga G., Barber K. R., Grant C. W. Visualization of domains in rigid ganglioside/phosphatidylcholine bilayers: Ca2+ effects. Biochim Biophys Acta. 1986 Dec 16;863(2):139–155. doi: 10.1016/0005-2736(86)90254-3. [DOI] [PubMed] [Google Scholar]
  22. Mou J., Yang J., Shao Z. Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. J Mol Biol. 1995 May 5;248(3):507–512. doi: 10.1006/jmbi.1995.0238. [DOI] [PubMed] [Google Scholar]
  23. Nagle J. F. Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J Membr Biol. 1976;27(3):233–250. doi: 10.1007/BF01869138. [DOI] [PubMed] [Google Scholar]
  24. Peters M. W., Grant C. W. Freeze-etch study of an unmodified lectin interacting with its receptors in model membranes. Biochim Biophys Acta. 1984 Sep 5;775(3):273–282. doi: 10.1016/0005-2736(84)90181-0. [DOI] [PubMed] [Google Scholar]
  25. Peters M. W., Mehlhorn I. E., Barber K. R., Grant C. W. Evidence of a distribution difference between two gangliosides in bilayer membranes. Biochim Biophys Acta. 1984 Dec 19;778(3):419–428. doi: 10.1016/0005-2736(84)90389-4. [DOI] [PubMed] [Google Scholar]
  26. Rice P. A., McConnell H. M. Critical shape transitions of monolayer lipid domains. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6445–6448. doi: 10.1073/pnas.86.17.6445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rinia H. A., Demel R. A., van der Eerden J. P., de Kruijff B. Blistering of langmuir-blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy. Biophys J. 1999 Sep;77(3):1683–1693. doi: 10.1016/S0006-3495(99)77015-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rock P., Allietta M., Young W. W., Jr, Thompson T. E., Tillack T. W. Ganglioside GM1 and asialo-GM1 at low concentration are preferentially incorporated into the gel phase in two-component, two-phase phosphatidylcholine bilayers. Biochemistry. 1991 Jan 8;30(1):19–25. doi: 10.1021/bi00215a003. [DOI] [PubMed] [Google Scholar]
  29. Sharom F. J., Grant C. W. A model for ganglioside behaviour in cell membranes. Biochim Biophys Acta. 1978 Feb 21;507(2):280–293. doi: 10.1016/0005-2736(78)90423-6. [DOI] [PubMed] [Google Scholar]
  30. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  31. Slotte J. P. Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochim Biophys Acta. 1995 May 4;1235(2):419–427. doi: 10.1016/0005-2736(95)80031-a. [DOI] [PubMed] [Google Scholar]
  32. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Terzaghi A., Tettamanti G., Masserini M. Interaction of glycosphingolipids and glycoproteins: thermotropic properties of model membranes containing GM1 ganglioside and glycophorin. Biochemistry. 1993 Sep 21;32(37):9722–9725. doi: 10.1021/bi00088a026. [DOI] [PubMed] [Google Scholar]
  34. Thompson T. E., Allietta M., Brown R. E., Johnson M. L., Tillack T. W. Organization of ganglioside GM1 in phosphatidylcholine bilayers. Biochim Biophys Acta. 1985 Jul 25;817(2):229–237. doi: 10.1016/0005-2736(85)90024-0. [DOI] [PubMed] [Google Scholar]
  35. Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
  36. Worthman L. A., Nag K., Davis P. J., Keough K. M. Cholesterol in condensed and fluid phosphatidylcholine monolayers studied by epifluorescence microscopy. Biophys J. 1997 Jun;72(6):2569–2580. doi: 10.1016/S0006-3495(97)78900-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES