Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):2867–2879. doi: 10.1016/S0006-3495(00)76524-6

Lipid-mediated interactions between intrinsic membrane proteins: a theoretical study based on integral equations.

P Lagüe 1, M J Zuckermann 1, B Roux 1
PMCID: PMC1301166  PMID: 11106595

Abstract

This study of lipid-mediated interactions between proteins is based on a theory recently developed by the authors for describing the structure of the hydrocarbon chains in the neighborhood of a protein inclusion embedded in a lipid membrane [Lagüe et al., Farad. Discuss. 111:165-172, 1998]. The theory involves the hypernetted chain integral equation formalism for liquids. The exact lateral density-density response function of the hydrocarbon core, extracted from molecular dynamics simulations of a pure dipalmitoylphosphatidylcholine bilayer based on an atomic model, is used as input. For the sake of simplicity, protein inclusions are modeled as hard repulsive cylinders. Numerical calculations were performed with three cylinder sizes: a small cylinder of 2.5-A radius, corresponding roughly to an aliphatic chain; a medium cylinder of 5-A radius, corresponding to a alpha-helical polyalanine protein; and a large cylinder of 9-A radius, representing a small protein, such as the gramicidin channel. The calculations show that the average hydrocarbon density is perturbed over a distance of 20-25 A from the edge of the cylinder for every cylinder size. The lipid-mediated protein-protein effective interaction is calculated and is shown to be nonmonotonic. In the case of the small and the medium cylinders, the lipid-mediated effective interaction of two identical cylinders is repulsive at an intermediate range but attractive at short range. At contact, there is a free energy of -2k(B)T for the 2.5-A-radius cylinder and -9k(B)T for the 5-A-radius cylinder, indicating that the association of two alpha-helices of both sizes is favored by the lipid matrix. In contrast, the effective interaction is repulsive at all distances in the case of the large cylinder. Results were obtained with two integral equations theories: hypernetted chain and Percus-Yevick. For the two theories, all results are qualitatively identical.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aranda-Espinoza H., Berman A., Dan N., Pincus P., Safran S. Interaction between inclusions embedded in membranes. Biophys J. 1996 Aug;71(2):648–656. doi: 10.1016/S0006-3495(96)79265-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Tal N., Honig B. Helix-helix interactions in lipid bilayers. Biophys J. 1996 Dec;71(6):3046–3050. doi: 10.1016/S0006-3495(96)79498-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. Biophys J. 1999 Apr;76(4):1929–1938. doi: 10.1016/S0006-3495(99)77352-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gil T., Ipsen J. H., Mouritsen O. G., Sabra M. C., Sperotto M. M., Zuckermann M. J. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):245–266. doi: 10.1016/s0304-4157(98)00022-7. [DOI] [PubMed] [Google Scholar]
  5. Harroun T. A., Heller W. T., Weiss T. M., Yang L., Huang H. W. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J. 1999 Feb;76(2):937–945. doi: 10.1016/S0006-3495(99)77257-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harroun T. A., Heller W. T., Weiss T. M., Yang L., Huang H. W. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J. 1999 Jun;76(6):3176–3185. doi: 10.1016/S0006-3495(99)77469-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Husslein T., Moore P. B., Zhong Q., Newns D. M., Pattnaik P. C., Klein M. L. Molecular dynamics simulation of a hydrated diphytanol phosphatidylcholine lipid bilayer containing an alpha-helical bundle of four transmembrane domains of the influenza A virus M2 protein. Faraday Discuss. 1998;(111):201–246. doi: 10.1039/a806675b. [DOI] [PubMed] [Google Scholar]
  8. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  9. Kim K. S., Neu J., Oster G. Curvature-mediated interactions between membrane proteins. Biophys J. 1998 Nov;75(5):2274–2291. doi: 10.1016/S0006-3495(98)77672-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kühlbrandt W. Two-dimensional crystallization of membrane proteins. Q Rev Biophys. 1992 Feb;25(1):1–49. doi: 10.1017/s0033583500004716. [DOI] [PubMed] [Google Scholar]
  11. Lagüe P., Zuckermann M. J., Roux B. Protein inclusion in lipid membranes: a theory based on the hypernetted chain integral equation. Faraday Discuss. 1998;(111):165–246. doi: 10.1039/a807109h. [DOI] [PubMed] [Google Scholar]
  12. Lemmon M. A., Engelman D. M. Specificity and promiscuity in membrane helix interactions. Q Rev Biophys. 1994 May;27(2):157–218. doi: 10.1017/s0033583500004522. [DOI] [PubMed] [Google Scholar]
  13. Lemmon M. A., Flanagan J. M., Hunt J. F., Adair B. D., Bormann B. J., Dempsey C. E., Engelman D. M. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem. 1992 Apr 15;267(11):7683–7689. [PubMed] [Google Scholar]
  14. MacKenzie K. R., Prestegard J. H., Engelman D. M. A transmembrane helix dimer: structure and implications. Science. 1997 Apr 4;276(5309):131–133. doi: 10.1126/science.276.5309.131. [DOI] [PubMed] [Google Scholar]
  15. Marcelja S. Lipid-mediated protein interaction in membranes. Biochim Biophys Acta. 1976 Nov 11;455(1):1–7. doi: 10.1016/0005-2736(76)90149-8. [DOI] [PubMed] [Google Scholar]
  16. Marsh D., Horváth L. I. Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling. Biochim Biophys Acta. 1998 Nov 10;1376(3):267–296. doi: 10.1016/s0304-4157(98)00009-4. [DOI] [PubMed] [Google Scholar]
  17. May S., Ben-Shaul A. Molecular theory of lipid-protein interaction and the Lalpha-HII transition. Biophys J. 1999 Feb;76(2):751–767. doi: 10.1016/S0006-3495(99)77241-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
  19. Nielsen C., Goulian M., Andersen O. S. Energetics of inclusion-induced bilayer deformations. Biophys J. 1998 Apr;74(4):1966–1983. doi: 10.1016/S0006-3495(98)77904-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Owicki J. C., McConnell H. M. Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4750–4754. doi: 10.1073/pnas.76.10.4750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owicki J. C., Springgate M. W., McConnell H. M. Theoretical study of protein--lipid interactions in bilayer membranes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1616–1619. doi: 10.1073/pnas.75.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pearson L. T., Edelman J., Chan S. I. Statistical mechanics of lipid membranes. Protein correlation functions and lipid ordering. Biophys J. 1984 May;45(5):863–871. doi: 10.1016/S0006-3495(84)84232-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Popot J. L., Engelman D. M. Membrane protein folding and oligomerization: the two-stage model. Biochemistry. 1990 May 1;29(17):4031–4037. doi: 10.1021/bi00469a001. [DOI] [PubMed] [Google Scholar]
  24. Sabra M. C., Uitdehaag J. C., Watts A. General model for lipid-mediated two-dimensional array formation of membrane proteins: application to bacteriorhodopsin. Biophys J. 1998 Sep;75(3):1180–1188. doi: 10.1016/S0006-3495(98)74037-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shen L., Bassolino D., Stouch T. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J. 1997 Jul;73(1):3–20. doi: 10.1016/S0006-3495(97)78042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sintes T., Baumgärtner A. Protein attraction in membranes induced by lipid fluctuations. Biophys J. 1997 Nov;73(5):2251–2259. doi: 10.1016/S0006-3495(97)78257-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Watts A. Solid-state NMR approaches for studying the interaction of peptides and proteins with membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):297–318. doi: 10.1016/s0304-4157(98)00012-4. [DOI] [PubMed] [Google Scholar]
  29. Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES