Abstract
Heparan sulfate N-deacetylase/N-sulfotransferase (NDST) catalyzes the deacetylation and sulfation of N-acetyl-D-glucosamine residues of heparan sulfate, a key step in its biosynthesis. Recent crystallographic and mutational studies have identified several potentially catalytic residues of the sulfotransferase domain of this enzyme (, J. Biol. Chem. 274:10673-10676). We have used the x-ray crystal structure of heparan sulfate N-sulfotransferase with 3'-phosphoadenosine 5'-phosphate to build a solution model with cofactor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and a model heparan sulfate ligand bound, and subsequently performed a 2-ns dynamics solution simulation. The simulation results confirm the importance of residues Glu(642), Lys(614), and Lys(833), with the possible involvement of Thr(617) and Thr(618), in binding PAPS. Additionally, Lys(676) is found in close proximity to the reaction site in our solvated structure. This study illustrates for the first time the possible involvement of water in the catalysis. Three water molecules were found in the binding site, where they are coordinated to PAPS, heparan sulfate, and the catalytic residues.
Full Text
The Full Text of this article is available as a PDF (131.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bame K. J., Danda J., Hassall A., Tumova S. Abeta(1-40) prevents heparanase-catalyzed degradation of heparan sulfate glycosaminoglycans and proteoglycans in vitro. A role for heparan sulfate proteoglycan turnover in Alzheimer's disease. J Biol Chem. 1997 Jul 4;272(27):17005–17011. doi: 10.1074/jbc.272.27.17005. [DOI] [PubMed] [Google Scholar]
- Berry L., Stafford A., Fredenburgh J., O'Brodovich H., Mitchell L., Weitz J., Andrew M., Chan A. K. Investigation of the anticoagulant mechanisms of a covalent antithrombin-heparin complex. J Biol Chem. 1998 Dec 25;273(52):34730–34736. doi: 10.1074/jbc.273.52.34730. [DOI] [PubMed] [Google Scholar]
- Caughey B., Raymond G. J. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol. 1993 Feb;67(2):643–650. doi: 10.1128/jvi.67.2.643-650.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duensing T. D., Wing J. S., van Putten J. P. Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun. 1999 Sep;67(9):4463–4468. doi: 10.1128/iai.67.9.4463-4468.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feese M., Pettigrew D. W., Meadow N. D., Roseman S., Remington S. J. Cation-promoted association of a regulatory and target protein is controlled by protein phosphorylation. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3544–3548. doi: 10.1073/pnas.91.9.3544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forsberg E., Pejler G., Ringvall M., Lunderius C., Tomasini-Johansson B., Kusche-Gullberg M., Eriksson I., Ledin J., Hellman L., Kjellén L. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature. 1999 Aug 19;400(6746):773–776. doi: 10.1038/23488. [DOI] [PubMed] [Google Scholar]
- Kakuta Y., Pedersen L. G., Carter C. W., Negishi M., Pedersen L. C. Crystal structure of estrogen sulphotransferase. Nat Struct Biol. 1997 Nov;4(11):904–908. doi: 10.1038/nsb1197-904. [DOI] [PubMed] [Google Scholar]
- Kakuta Y., Petrotchenko E. V., Pedersen L. C., Negishi M. The sulfuryl transfer mechanism. Crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis. J Biol Chem. 1998 Oct 16;273(42):27325–27330. doi: 10.1074/jbc.273.42.27325. [DOI] [PubMed] [Google Scholar]
- Kakuta Y., Sueyoshi T., Negishi M., Pedersen L. C. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1. J Biol Chem. 1999 Apr 16;274(16):10673–10676. doi: 10.1074/jbc.274.16.10673. [DOI] [PubMed] [Google Scholar]
- Kolset S. O., Salmivirta M. Cell surface heparan sulfate proteoglycans and lipoprotein metabolism. Cell Mol Life Sci. 1999 Nov 30;56(9-10):857–870. doi: 10.1007/s000180050031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin X., Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature. 1999 Jul 15;400(6741):281–284. doi: 10.1038/22343. [DOI] [PubMed] [Google Scholar]
- Matte A., Tari L. W., Delbaere L. T. How do kinases transfer phosphoryl groups? Structure. 1998 Apr 15;6(4):413–419. doi: 10.1016/s0969-2126(98)00043-4. [DOI] [PubMed] [Google Scholar]
- Mildvan A. S. Mechanisms of signaling and related enzymes. Proteins. 1997 Dec;29(4):401–416. [PubMed] [Google Scholar]
- Morris G. M., Goodsell D. S., Huey R., Olson A. J. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des. 1996 Aug;10(4):293–304. doi: 10.1007/BF00124499. [DOI] [PubMed] [Google Scholar]
- Parish C. R., Freeman C., Brown K. J., Francis D. J., Cowden W. B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999 Jul 15;59(14):3433–3441. [PubMed] [Google Scholar]
- Payre F., Vincent A., Carreno S. ovo/svb integrates Wingless and DER pathways to control epidermis differentiation. Nature. 1999 Jul 15;400(6741):271–275. doi: 10.1038/22330. [DOI] [PubMed] [Google Scholar]
- Peifer M. Signal transduction. Neither straight nor narrow. Nature. 1999 Jul 15;400(6741):213–215. doi: 10.1038/22214. [DOI] [PubMed] [Google Scholar]
- Perrimon N., Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature. 2000 Apr 13;404(6779):725–728. doi: 10.1038/35008000. [DOI] [PubMed] [Google Scholar]
- Pikas D. S., Eriksson I., Kjellén L. Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. Biochemistry. 2000 Apr 18;39(15):4552–4558. doi: 10.1021/bi992524l. [DOI] [PubMed] [Google Scholar]
- Shirakihara Y., Evans P. R. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. J Mol Biol. 1988 Dec 20;204(4):973–994. doi: 10.1016/0022-2836(88)90056-3. [DOI] [PubMed] [Google Scholar]
- Sueyoshi T., Kakuta Y., Pedersen L. C., Wall F. E., Pedersen L. G., Negishi M. A role of Lys614 in the sulfotransferase activity of human heparan sulfate N-deacetylase/N-sulfotransferase. FEBS Lett. 1998 Aug 21;433(3):211–214. doi: 10.1016/s0014-5793(98)00913-2. [DOI] [PubMed] [Google Scholar]
- Wild K., Bohner T., Folkers G., Schulz G. E. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue. Protein Sci. 1997 Oct;6(10):2097–2106. doi: 10.1002/pro.5560061005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witvrouw M., De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol. 1997 Oct;29(4):497–511. doi: 10.1016/s0306-3623(96)00563-0. [DOI] [PubMed] [Google Scholar]