Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):2925–2943. doi: 10.1016/S0006-3495(00)76530-1

Modeling zymogen protein C.

L Perera 1, C Foley 1, T A Darden 1, D Stafford 1, T Mather 1, C T Esmon 1, L G Pedersen 1
PMCID: PMC1301172  PMID: 11106601

Abstract

A solution structure for the complete zymogen form of human coagulation protein C is modeled. The initial core structure is based on the x-ray crystallographic structure of the gamma-carboxyglutamic acid (Gla)-domainless activated form. The Gla domain (residues 1-48) is modeled from the x-ray crystal coordinates of the factor VII(a)/tissue factor complex and oriented with the epidermal growth factor-1 domain to yield an initial orientation consistent with the x-ray crystal structure of porcine factor IX(a). The missing C-terminal residues in the light chain (residues 147-157) and the activation peptide residues 158-169 were introduced using homology modeling so that the activation peptide residues directly interact with the residues in the calcium binding loop. Molecular dynamics simulations (Amber-particle-mesh-Ewald) are used to obtain the complete calcium-complexed solution structure. The individual domain structures of protein C in solution are largely unaffected by solvation, whereas the Gla-epidermal growth factor-1 orientation evolves to a form different from both factors VII(a) and IX(a). The solution structure of the zymogen protein C is compared with the crystal structures of the existing zymogen serine proteases: chymotrypsinogen, proproteinase, and prethrombin-2. Calculated electrostatic potential surfaces support the involvement of the serine protease calcium ion binding loop in providing a suitable electrostatic environment around the scissile bond for II(a)/thrombomodulin interaction.

Full Text

The Full Text of this article is available as a PDF (354.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  2. Blow D. M., Steitz T. A. X-ray diffraction studies of enzymes. Annu Rev Biochem. 1970;39:63–100. doi: 10.1146/annurev.bi.39.070170.000431. [DOI] [PubMed] [Google Scholar]
  3. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  4. Brandstetter H., Bauer M., Huber R., Lollar P., Bode W. X-ray structure of clotting factor IXa: active site and module structure related to Xase activity and hemophilia B. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9796–9800. doi: 10.1073/pnas.92.21.9796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng C. H., Geng J. P., Castellino F. J. The functions of the first epidermal growth factor homology region of human protein C as revealed by a charge-to-alanine scanning mutagenesis investigation. Biol Chem. 1997 Dec;378(12):1491–1500. doi: 10.1515/bchm.1997.378.12.1491. [DOI] [PubMed] [Google Scholar]
  6. Christiansen W. T., Castellino F. J. Properties of recombinant chimeric human protein C and activated protein C containing the gamma-carboxyglutamic acid and trailing helical stack domains of protein C replaced by those of human coagulation factor IX. Biochemistry. 1994 May 17;33(19):5901–5911. doi: 10.1021/bi00185a030. [DOI] [PubMed] [Google Scholar]
  7. Christiansen W. T., Geng J. P., Castellino F. J. Structure-function assessment of the role of the helical stack domain in the properties of human recombinant protein C and activated protein C. Biochemistry. 1995 Jun 27;34(25):8082–8090. doi: 10.1021/bi00025a014. [DOI] [PubMed] [Google Scholar]
  8. Christiansen W. T., Jalbert L. R., Robertson R. M., Jhingan A., Prorok M., Castellino F. J. Hydrophobic amino acid residues of human anticoagulation protein C that contribute to its functional binding to phospholipid Vesicles. Biochemistry. 1995 Aug 22;34(33):10376–10382. doi: 10.1021/bi00033a008. [DOI] [PubMed] [Google Scholar]
  9. Christiansen W. T., Tulinsky A., Castellino F. J. Functions of individual gamma-carboxyglutamic acid (Gla) residues of human protein c. Determination of functionally nonessential Gla residues and correlations with their mode of binding to calcium. Biochemistry. 1994 Dec 20;33(50):14993–15000. doi: 10.1021/bi00254a007. [DOI] [PubMed] [Google Scholar]
  10. Colpitts T. L., Prorok M., Castellino F. J. Binding of calcium to individual gamma-carboxyglutamic acid residues of human protein C. Biochemistry. 1995 Feb 28;34(8):2424–2430. doi: 10.1021/bi00008a004. [DOI] [PubMed] [Google Scholar]
  11. Comp P. C., Esmon C. T. Generation of fibrinolytic activity by infusion of activated protein C into dogs. J Clin Invest. 1981 Nov;68(5):1221–1228. doi: 10.1172/JCI110368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dahlbäck B. Factor V and protein S as cofactors to activated protein C. Haematologica. 1997 Jan-Feb;82(1):91–95. [PubMed] [Google Scholar]
  13. Dahlbäck B., Hildebrand B. Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor V. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1396–1400. doi: 10.1073/pnas.91.4.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davie E. W. Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost. 1995 Jul;74(1):1–6. [PubMed] [Google Scholar]
  15. Drakenberg T., Fernlund P., Roepstorff P., Stenflo J. beta-Hydroxyaspartic acid in vitamin K-dependent protein C. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1802–1806. doi: 10.1073/pnas.80.7.1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Esmon C. T., Esmon N. L., Le Bonniec B. F., Johnson A. E. Protein C activation. Methods Enzymol. 1993;222:359–385. doi: 10.1016/0076-6879(93)22024-a. [DOI] [PubMed] [Google Scholar]
  17. Esmon C. T., Esmon N. L. Protein C activation. Semin Thromb Hemost. 1984 Apr;10(2):122–130. doi: 10.1055/s-2007-1004414. [DOI] [PubMed] [Google Scholar]
  18. Esmon C. T. Inflammation and thrombosis: the impact of inflammation on the protein C anticoagulant pathway. Haematologica. 1995 Mar-Apr;80(2 Suppl):49–56. [PubMed] [Google Scholar]
  19. Esmon C. T. Inflammation. They're not just for clots anymore. Curr Biol. 1995 Jul 1;5(7):743–746. doi: 10.1016/s0960-9822(95)00150-3. [DOI] [PubMed] [Google Scholar]
  20. Esmon C. T., Taylor F. B., Jr, Snow T. R. Inflammation and coagulation: linked processes potentially regulated through a common pathway mediated by protein C. Thromb Haemost. 1991 Jul 12;66(1):160–165. [PubMed] [Google Scholar]
  21. Esmon C. T. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989 Mar 25;264(9):4743–4746. [PubMed] [Google Scholar]
  22. Fay P. J., Smudzin T. M., Walker F. J. Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity. J Biol Chem. 1991 Oct 25;266(30):20139–20145. [PubMed] [Google Scholar]
  23. Fernlund P., Stenflo J. Amino acid sequence of the light chain of bovine protein C. J Biol Chem. 1982 Oct 25;257(20):12170–12179. [PubMed] [Google Scholar]
  24. Fernlund P., Stenflo J. Beta-hydroxyaspartic acid in vitamin K-dependent proteins. J Biol Chem. 1983 Oct 25;258(20):12509–12512. [PubMed] [Google Scholar]
  25. Fisher C. L., Greengard J. S., Griffin J. H. Models of the serine protease domain of the human antithrombotic plasma factor activated protein C and its zymogen. Protein Sci. 1994 Apr;3(4):588–599. doi: 10.1002/pro.5560030407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Foster D. C., Rudinski M. S., Schach B. G., Berkner K. L., Kumar A. A., Hagen F. S., Sprecher C. A., Insley M. Y., Davie E. W. Propeptide of human protein C is necessary for gamma-carboxylation. Biochemistry. 1987 Nov 3;26(22):7003–7011. doi: 10.1021/bi00396a022. [DOI] [PubMed] [Google Scholar]
  27. Foster D. C., Sprecher C. A., Holly R. D., Gambee J. E., Walker K. M., Kumar A. A. Endoproteolytic processing of the dibasic cleavage site in the human protein C precursor in transfected mammalian cells: effects of sequence alterations on efficiency of cleavage. Biochemistry. 1990 Jan 16;29(2):347–354. doi: 10.1021/bi00454a007. [DOI] [PubMed] [Google Scholar]
  28. Foster D. C., Yoshitake S., Davie E. W. The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4673–4677. doi: 10.1073/pnas.82.14.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Foster D., Davie E. W. Characterization of a cDNA coding for human protein C. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4766–4770. doi: 10.1073/pnas.81.15.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Fuentes-Prior P., Iwanaga Y., Huber R., Pagila R., Rumennik G., Seto M., Morser J., Light D. R., Bode W. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. 2000 Mar 30;404(6777):518–525. doi: 10.1038/35006683. [DOI] [PubMed] [Google Scholar]
  31. Geng J. P., Castellino F. J. Properties of a recombinant chimeric protein in which the gamma-carboxyglutamic acid and helical stack domains of human anticoagulant protein C are replaced by those of human coagulation factor VII. Thromb Haemost. 1997 May;77(5):926–933. [PubMed] [Google Scholar]
  32. Geng J. P., Cheng C. H., Castellino F. J. Functional consequences of mutations in amino acid residues that stabilize calcium binding to the first epidermal growth factor homology domain of human protein C. Thromb Haemost. 1996 Nov;76(5):720–728. [PubMed] [Google Scholar]
  33. Gerlitz B., Grinnell B. W. Mutation of protease domain residues Lys37-39 in human protein C inhibits activation by the thrombomodulin-thrombin complex without affecting activation by free thrombin. J Biol Chem. 1996 Sep 13;271(37):22285–22288. doi: 10.1074/jbc.271.37.22285. [DOI] [PubMed] [Google Scholar]
  34. Gomis-Rüth F. X., Gómez M., Bode W., Huber R., Avilés F. X. The three-dimensional structure of the native ternary complex of bovine pancreatic procarboxypeptidase A with proproteinase E and chymotrypsinogen C. EMBO J. 1995 Sep 15;14(18):4387–4394. doi: 10.1002/j.1460-2075.1995.tb00117.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Grinnell B. W., Walls J. D., Gerlitz B. Glycosylation of human protein C affects its secretion, processing, functional activities, and activation by thrombin. J Biol Chem. 1991 May 25;266(15):9778–9785. [PubMed] [Google Scholar]
  36. Hamaguchi N., Charifson P., Darden T., Xiao L., Padmanabhan K., Tulinsky A., Hiskey R., Pedersen L. Molecular dynamics simulation of bovine prothrombin fragment 1 in the presence of calcium ions. Biochemistry. 1992 Sep 22;31(37):8840–8848. doi: 10.1021/bi00152a021. [DOI] [PubMed] [Google Scholar]
  37. He X., Rezaie A. R. Identification and characterization of the sodium-binding site of activated protein C. J Biol Chem. 1999 Feb 19;274(8):4970–4976. doi: 10.1074/jbc.274.8.4970. [DOI] [PubMed] [Google Scholar]
  38. Hogg P. J., Ohlin A. K., Stenflo J. Identification of structural domains in protein C involved in its interaction with thrombin-thrombomodulin on the surface of endothelial cells. J Biol Chem. 1992 Jan 15;267(2):703–706. [PubMed] [Google Scholar]
  39. Jalbert L. R., Chan J. C., Christiansen W. T., Castellino F. J. The hydrophobic nature of residue-5 of human protein C is a major determinant of its functional interactions with acidic phospholipid vesicles. Biochemistry. 1996 Jun 4;35(22):7093–7099. doi: 10.1021/bi960290p. [DOI] [PubMed] [Google Scholar]
  40. Jane S. M., Hau L., Salem H. H. Regulation of activated protein C by factor Xa. Blood Coagul Fibrinolysis. 1991 Dec;2(6):723–729. doi: 10.1097/00001721-199112000-00005. [DOI] [PubMed] [Google Scholar]
  41. Kalafatis M., Rand M. D., Mann K. G. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Biol Chem. 1994 Dec 16;269(50):31869–31880. [PubMed] [Google Scholar]
  42. Kisiel W., Ericsson L. H., Davie E. W. Proteolytic activation of protein C from bovine plasma. Biochemistry. 1976 Nov 2;15(22):4893–4900. doi: 10.1021/bi00667a022. [DOI] [PubMed] [Google Scholar]
  43. Knobe K. E., Berntsdotter A., Shen L., Morser J., Dahlbäck B., Villoutreix B. O. Probing the activation of protein C by the thrombin-thrombomodulin complex using structural analysis, site-directed mutagenesis, and computer modeling. Proteins. 1999 May 1;35(2):218–234. doi: 10.1002/(sici)1097-0134(19990501)35:2<218::aid-prot8>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  44. Le Bonniec B. F., Esmon C. T. Glu-192----Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7371–7375. doi: 10.1073/pnas.88.16.7371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Le Bonniec B. F., MacGillivray R. T., Esmon C. T. Thrombin Glu-39 restricts the P'3 specificity to nonacidic residues. J Biol Chem. 1991 Jul 25;266(21):13796–13803. [PubMed] [Google Scholar]
  46. Li L., Darden T. A., Freedman S. J., Furie B. C., Furie B., Baleja J. D., Smith H., Hiskey R. G., Pedersen L. G. Refinement of the NMR solution structure of the gamma-carboxyglutamic acid domain of coagulation factor IX using molecular dynamics simulation with initial Ca2+ positions determined by a genetic algorithm. Biochemistry. 1997 Feb 25;36(8):2132–2138. doi: 10.1021/bi962250r. [DOI] [PubMed] [Google Scholar]
  47. Li L., Darden T., Hiskey R., Pedersen L. G. Computational studies of human prothrombin fragment 1, the Gla domain of factor IX and several biological interesting mutants. Haemostasis. 1996;26 (Suppl 1):54–59. doi: 10.1159/000217241. [DOI] [PubMed] [Google Scholar]
  48. MAMMEN E. F., THOMAS W. R., SEEGERS W. H. Activation of purified prothrombin to autoprothrombin I or autoprothrombin II (platelet cofactor II or autoprothrombin II-A). Thromb Diath Haemorrh. 1960 Dec 15;5:218–249. [PubMed] [Google Scholar]
  49. Mather T., Oganessyan V., Hof P., Huber R., Foundling S., Esmon C., Bode W. The 2.8 A crystal structure of Gla-domainless activated protein C. EMBO J. 1996 Dec 16;15(24):6822–6831. [PMC free article] [PubMed] [Google Scholar]
  50. McClure D. B., Walls J. D., Grinnell B. W. Post-translational processing events in the secretion pathway of human protein C, a complex vitamin K-dependent antithrombotic factor. J Biol Chem. 1992 Sep 25;267(27):19710–19717. [PubMed] [Google Scholar]
  51. McDonald J. F., Evans T. C., Jr, Emeagwali D. B., Hariharan M., Allewell N. M., Pusey M. L., Shah A. M., Nelsestuen G. L. Ionic properties of membrane association by vitamin K-dependent proteins: the case for univalency. Biochemistry. 1997 Dec 16;36(50):15589–15598. doi: 10.1021/bi971114z. [DOI] [PubMed] [Google Scholar]
  52. McDonald J. F., Shah A. M., Schwalbe R. A., Kisiel W., Dahlbäck B., Nelsestuen G. L. Comparison of naturally occurring vitamin K-dependent proteins: correlation of amino acid sequences and membrane binding properties suggests a membrane contact site. Biochemistry. 1997 Apr 29;36(17):5120–5127. doi: 10.1021/bi9626160. [DOI] [PubMed] [Google Scholar]
  53. Nesheim M. E., Canfield W. M., Kisiel W., Mann K. G. Studies of the capacity of factor Xa to protect factor Va from inactivation by activated protein C. J Biol Chem. 1982 Feb 10;257(3):1443–1447. [PubMed] [Google Scholar]
  54. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  55. Nishioka J., Ido M., Hayashi T., Suzuki K. The Gla26 residue of protein C is required for the binding of protein C to thrombomodulin and endothelial cell protein C receptor, but not to protein S and factor Va. Thromb Haemost. 1996 Feb;75(2):275–282. [PubMed] [Google Scholar]
  56. Perera L., Darden T. A., Pedersen L. G. Probing the structural changes in the light chain of human coagulation factor VIIa due to tissue factor association. Biophys J. 1999 Jul;77(1):99–113. doi: 10.1016/S0006-3495(99)76875-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Perera L., Li L., Darden T., Monroe D. M., Pedersen L. G. Prediction of solution structures of the Ca2+-bound gamma-carboxyglutamic acid domains of protein S and homolog growth arrest specific protein 6: use of the particle mesh Ewald method. Biophys J. 1997 Oct;73(4):1847–1856. doi: 10.1016/S0006-3495(97)78215-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Reitsma P. H. Protein C deficiency: from gene defects to disease. Thromb Haemost. 1997 Jul;78(1):344–350. [PubMed] [Google Scholar]
  59. Rezaie A. R., Esmon C. T. Conversion of glutamic acid 192 to glutamine in activated protein C changes the substrate specificity and increases reactivity toward macromolecular inhibitors. J Biol Chem. 1993 Sep 25;268(27):19943–19948. [PubMed] [Google Scholar]
  60. Rezaie A. R., Esmon C. T. The function of calcium in protein C activation by thrombin and the thrombin-thrombomodulin complex can be distinguished by mutational analysis of protein C derivatives. J Biol Chem. 1992 Dec 25;267(36):26104–26109. [PubMed] [Google Scholar]
  61. Rezaie A. R., Esmon C. T. Tryptophans 231 and 234 in protein C report the Ca(2+)-dependent conformational change required for activation by the thrombin-thrombomodulin complex. Biochemistry. 1995 Sep 26;34(38):12221–12226. doi: 10.1021/bi00038a016. [DOI] [PubMed] [Google Scholar]
  62. Rezaie A. R., Esmon N. L., Esmon C. T. The high affinity calcium-binding site involved in protein C activation is outside the first epidermal growth factor homology domain. J Biol Chem. 1992 Jun 15;267(17):11701–11704. [PubMed] [Google Scholar]
  63. Rezaie A. R., Mather T., Sussman F., Esmon C. T. Mutation of Glu-80-->Lys results in a protein C mutant that no longer requires Ca2+ for rapid activation by the thrombin-thrombomodulin complex. J Biol Chem. 1994 Feb 4;269(5):3151–3154. [PubMed] [Google Scholar]
  64. Shen L., Dahlbäck B. Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor VIIIa. J Biol Chem. 1994 Jul 22;269(29):18735–18738. [PubMed] [Google Scholar]
  65. Shen L., He X., Dahlbäck B. Synergistic cofactor function of factor V and protein S to activated protein C in the inactivation of the factor VIIIa - factor IXa complex -- species specific interactions of components of the protein C anticoagulant system. Thromb Haemost. 1997 Sep;78(3):1030–1036. [PubMed] [Google Scholar]
  66. Shen L., Shah A. M., Dahlbäck B., Nelsestuen G. L. Enhancement of human protein C function by site-directed mutagenesis of the gamma-carboxyglutamic acid domain. J Biol Chem. 1998 Nov 20;273(47):31086–31091. doi: 10.1074/jbc.273.47.31086. [DOI] [PubMed] [Google Scholar]
  67. Shen L., Shah A. M., Dahlbäck B., Nelsestuen G. L. Enhancing the activity of protein C by mutagenesis to improve the membrane-binding site: studies related to proline-10. Biochemistry. 1997 Dec 23;36(51):16025–16031. doi: 10.1021/bi971730v. [DOI] [PubMed] [Google Scholar]
  68. Stenflo J. A new vitamin K-dependent protein. Purification from bovine plasma and preliminary characterization. J Biol Chem. 1976 Jan 25;251(2):355–363. [PubMed] [Google Scholar]
  69. Stenflo J., Fernlund P. Amino acid sequence of the heavy chain of bovine protein C. J Biol Chem. 1982 Oct 25;257(20):12180–12190. [PubMed] [Google Scholar]
  70. Tanabe S., Sugo T., Matsuda M. Synthesis of protein C in human umbilical vein endothelial cells. J Biochem. 1991 Jun;109(6):924–928. doi: 10.1093/oxfordjournals.jbchem.a123481. [DOI] [PubMed] [Google Scholar]
  71. Vijayalakshmi J., Padmanabhan K. P., Mann K. G., Tulinsky A. The isomorphous structures of prethrombin2, hirugen-, and PPACK-thrombin: changes accompanying activation and exosite binding to thrombin. Protein Sci. 1994 Dec;3(12):2254–2271. doi: 10.1002/pro.5560031211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wang D., Bode W., Huber R. Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol. 1985 Oct 5;185(3):595–624. doi: 10.1016/0022-2836(85)90074-9. [DOI] [PubMed] [Google Scholar]
  73. Yegneswaran S., Wood G. M., Esmon C. T., Johnson A. E. Protein S alters the active site location of activated protein C above the membrane surface. A fluorescence resonance energy transfer study of topography. J Biol Chem. 1997 Oct 3;272(40):25013–25021. doi: 10.1074/jbc.272.40.25013. [DOI] [PubMed] [Google Scholar]
  74. York D. M., Wlodawer A., Pedersen L. G., Darden T. A. Atomic-level accuracy in simulations of large protein crystals. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8715–8718. doi: 10.1073/pnas.91.18.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES