Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):2975–2986. doi: 10.1016/s0006-3495(00)76534-9

Na(+)-dependent Ca(2+) transport modulates the secretory response to the Fcepsilon receptor stimulus of mast cells.

E Rumpel 1, U Pilatus 1, A Mayer 1, I Pecht 1
PMCID: PMC1301176  PMID: 11106605

Abstract

Immunological stimulation of rat mucosal-type mast cells (RBL-2H3 line) by clustering of their Fcepsilon receptors (FcepsilonRI) causes a rapid and transient increase in free cytoplasmic Ca(2+) ion concentration ([Ca(2+)](i)) because of its release from intracellular stores. This is followed by a sustained elevated [Ca(2+)](i), which is attained by Ca(2+) influx. Because an FcepsilonRI-induced increase in the membrane permeability for Na(+) ions has also been observed, and secretion is at least partially inhibited by lowering of extracellular sodium ion concentrations ([Na(+)](o)), the operation of a Na(+)/Ca(2+) exchanger has been considered. We found significant coupling between the Ca(2+) and Na(+) ion gradients across plasma membranes of RBL-2H3 cells, which we investigated employing (23)Na-NMR, (45)Ca(2+), (85)Sr(2+), and the Ca(2+)-sensitive fluorescent probe indo-1. The reduction in extracellular Ca(2+) concentrations ([Ca(2+)](o)) provoked a [Na(+)](i) increase, and a decrease in [Na(+)](o) results in a Ca(2+) influx as well as an increase in [Ca(2+)](i). Mediator secretion assays, monitoring the released beta-hexosaminidase activity, showed in the presence of extracellular sodium a sigmoidal dependence on [Ca(2+)](o). However, the secretion was not affected by varying [Ca(2+)](o) as [Na(+)](o) was lowered to 0.4 mM, while it was almost completely inhibited at [Na(+)](o) = 136 mM and [Ca(2+)](o) < 0.05 mM. Increasing [Na(+)](o) caused the secretion to reach a minimum at [Na(+)](o) = 20 mM, followed by a steady increase to its maximum value at 136 mM. A parallel [Na(+)](o) dependence of the Ca(2+) fluxes was observed: Antigen stimulation at [Na(+)](o) = 136 mM caused a pronounced Ca(2+) influx. At [Na(+)](o) = 17 mM only a slight Ca(2+) efflux was detected, whereas at [Na(+)](o) = 0.4 mM no Ca(2+) transport across the cell membrane could be observed. Our results clearly indicate that the [Na(+)](o) dependence of the secretory response to FcepsilonRI stimulation is due to its influence on the [Ca(2+)](i), which is mediated by a Na(+)-dependent Ca(2+) transport.

Full Text

The Full Text of this article is available as a PDF (189.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanyam M., Rohowsky-Kochan C., Reeves J. P., Gardner J. P. Na+/Ca2+ exchange-mediated calcium entry in human lymphocytes. J Clin Invest. 1994 Nov;94(5):2002–2008. doi: 10.1172/JCI117553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaven M. A., Moore J. P., Smith G. A., Hesketh T. R., Metcalfe J. C. The calcium signal and phosphatidylinositol breakdown in 2H3 cells. J Biol Chem. 1984 Jun 10;259(11):7137–7142. [PubMed] [Google Scholar]
  3. Beaven M. A., Rogers J., Moore J. P., Hesketh T. R., Smith G. A., Metcalfe J. C. The mechanism of the calcium signal and correlation with histamine release in 2H3 cells. J Biol Chem. 1984 Jun 10;259(11):7129–7136. [PubMed] [Google Scholar]
  4. Bental M., Degani H., Avron M. Na-NMR Studies of the Intracellular Sodium Ion Concentration in the Halotolerant Alga Dunaliella salina. Plant Physiol. 1988 Aug;87(4):813–817. doi: 10.1104/pp.87.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chernaya G., Vázquez M., Reeves J. P. Sodium-calcium exchange and store-dependent calcium influx in transfected chinese hamster ovary cells expressing the bovine cardiac sodium-calcium exchanger. Acceleration of exchange activity in thapsigargin-treated cells. J Biol Chem. 1996 Mar 8;271(10):5378–5385. doi: 10.1074/jbc.271.10.5378. [DOI] [PubMed] [Google Scholar]
  6. Cragoe E. J., Jr, Woltersdorf O. W., Jr, Bicking J. B., Kwong S. F., Jones J. H. Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. J Med Chem. 1967 Jan;10(1):66–75. doi: 10.1021/jm00313a014. [DOI] [PubMed] [Google Scholar]
  7. Dale W. E., Simchowitz L. The role of Na(+)-Ca2+ exchange in human neutrophil function. Ann N Y Acad Sci. 1991;639:616–630. doi: 10.1111/j.1749-6632.1991.tb17359.x. [DOI] [PubMed] [Google Scholar]
  8. Dar O., Pecht I. Fc epsilon receptor mediated Ca2+ influx into mast cells is modulated by the concentration of cytosolic free Ca2+ ions. FEBS Lett. 1992 Sep 28;310(2):123–128. doi: 10.1016/0014-5793(92)81311-9. [DOI] [PubMed] [Google Scholar]
  9. Eisner D. A., Lederer W. J. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol. 1985 Mar;248(3 Pt 1):C189–C202. doi: 10.1152/ajpcell.1985.248.3.C189. [DOI] [PubMed] [Google Scholar]
  10. Falcone D., Fewtrell C. Ca(2+)-ATPase inhibitor, cyclopiazonic acid, releases Ca2+ from intracellular stores in RBL-2H3 mast cells and activates a Ca2+ influx pathway that is permeable to sodium and manganese. J Cell Physiol. 1995 Jul;164(1):205–213. doi: 10.1002/jcp.1041640125. [DOI] [PubMed] [Google Scholar]
  11. Fasolato C., Hoth M., Matthews G., Penner R. Ca2+ and Mn2+ influx through receptor-mediated activation of nonspecific cation channels in mast cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3068–3072. doi: 10.1073/pnas.90.7.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fasolato C., Hoth M., Penner R. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem. 1993 Oct 5;268(28):20737–20740. [PubMed] [Google Scholar]
  13. Foreman J. C., Mongar J. L. The interaction of calcium and strontium with phosphatidyl serine in the anaphylactic secretion of histamine. J Physiol. 1973 Apr;230(2):493–507. doi: 10.1113/jphysiol.1973.sp010200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foreman J. C., Mongar J. L. The role of the alkaline earth ions in anaphylactic histamine secretion. J Physiol. 1972 Aug;224(3):753–769. doi: 10.1113/jphysiol.1972.sp009921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gericke M., Dar O., Droogmans G., Pecht I., Nilius B. Immunological stimulation of single rat basophilic leukemia RBL-2H3 cells co-activates Ca(2+)-entry and K(+)-channels. Cell Calcium. 1995 Jan;17(1):71–83. doi: 10.1016/0143-4160(95)90104-3. [DOI] [PubMed] [Google Scholar]
  16. Gruwel M. L., Alves C., Schrader J. Na(+)-K(+)-ATPase in endothelial cell energetics: 23Na nuclear magnetic resonance and calorimetry study. Am J Physiol. 1995 Jan;268(1 Pt 2):H351–H358. doi: 10.1152/ajpheart.1995.268.1.H351. [DOI] [PubMed] [Google Scholar]
  17. Herchuelz A., Plasman P. O. Sodium-calcium exchange in the pancreatic B cell. Ann N Y Acad Sci. 1991;639:642–656. doi: 10.1111/j.1749-6632.1991.tb17361.x. [DOI] [PubMed] [Google Scholar]
  18. Hide M., Beaven M. A. Calcium influx in a rat mast cell (RBL-2H3) line. Use of multivalent metal ions to define its characteristics and role in exocytosis. J Biol Chem. 1991 Aug 15;266(23):15221–15229. [PubMed] [Google Scholar]
  19. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  20. Kanner B. I., Metzger H. Initial characterization of the calcium channel activated by the cross-linking of the receptors for immunoglobulin E. J Biol Chem. 1984 Aug 25;259(16):10188–10193. [PubMed] [Google Scholar]
  21. Kimura M., Cho J. H., Reeves J. P., Aviv A. Inhibition of Ca2+ entry by Ca2+ overloading of intracellular Ca2+ stores in human platelets. J Physiol. 1994 Aug 15;479(Pt 1):1–10. doi: 10.1113/jphysiol.1994.sp020273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Labrecque G. F., Holowka D., Baird B. Antigen-triggered membrane potential changes in IgE-sensitized rat basophilic leukemia cells: evidence for a repolarizing response that is important in the stimulation of cellular degranulation. J Immunol. 1989 Jan 1;142(1):236–243. [PubMed] [Google Scholar]
  23. Labrecque G. F., Holowka D., Baird B. Characterization of increased K+ permeability associated with the stimulation of receptors for immunoglobulin E on rat basophilic leukemia cells. J Biol Chem. 1991 Aug 15;266(23):14912–14917. [PubMed] [Google Scholar]
  24. Milanick M. A., Frame M. D. Kinetic models of Na-Ca exchange in ferret red blood cells. Interaction of intracellular Na, extracellular Ca, Cd, and Mn. Ann N Y Acad Sci. 1991;639:604–615. doi: 10.1111/j.1749-6632.1991.tb17358.x. [DOI] [PubMed] [Google Scholar]
  25. Mohr F. C., Fewtrell C. Depolarization of rat basophilic leukemia cells inhibits calcium uptake and exocytosis. J Cell Biol. 1987 Mar;104(3):783–792. doi: 10.1083/jcb.104.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mohr F. C., Fewtrell C. IgE receptor-mediated depolarization of rat basophilic leukemia cells measured with the fluorescent probe bis-oxonol. J Immunol. 1987 Mar 1;138(5):1564–1570. [PubMed] [Google Scholar]
  27. Mohr F. C., Fewtrell C. The relative contributions of extracellular and intracellular calcium to secretion from tumor mast cells. Multiple effects of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem. 1987 Aug 5;262(22):10638–10643. [PubMed] [Google Scholar]
  28. Nagata S., Adachi K., Shirai K., Sano H. 23Na NMR spectroscopy of free Na+ in the halotolerant bacterium Brevibacterium sp. and Escherichia coli. Microbiology. 1995 Mar;141(Pt 3):729–736. doi: 10.1099/13500872-141-3-729. [DOI] [PubMed] [Google Scholar]
  29. Niggli E., Lederer W. J. Photorelease of Ca2+ produces Na-Ca exchange currents and Na-Ca exchange "gating" currents. Ann N Y Acad Sci. 1991;639:61–70. doi: 10.1111/j.1749-6632.1991.tb17289.x. [DOI] [PubMed] [Google Scholar]
  30. Niggli E. Strontium-induced creep currents associated with tonic contractions in cardiac myocytes isolated from guinea-pigs. J Physiol. 1989 Jul;414:549–568. doi: 10.1113/jphysiol.1989.sp017703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ogino T., Shulman G. I., Avison M. J., Gullans S. R., den Hollander J. A., Shulman R. G. 23Na and 39K NMR studies of ion transport in human erythrocytes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1099–1103. doi: 10.1073/pnas.82.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pearce F. L., Thompson H. L. Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor. J Physiol. 1986 Mar;372:379–393. doi: 10.1113/jphysiol.1986.sp016014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pilatus U., Degani H., Pecht I. 31P and 23Na nuclear magnetic resonance studies of resting and stimulated mast cells. FEBS Lett. 1990 Sep 3;269(2):292–296. doi: 10.1016/0014-5793(90)81179-r. [DOI] [PubMed] [Google Scholar]
  34. Pilatus U., Pecht I. 86Rb+ ion fluxes in resting and immunologically stimulated mucosal mast cells. Eur J Immunol. 1993 May;23(5):1125–1133. doi: 10.1002/eji.1830230522. [DOI] [PubMed] [Google Scholar]
  35. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  36. Reeves J. P., Hale C. C. The stoichiometry of the cardiac sodium-calcium exchange system. J Biol Chem. 1984 Jun 25;259(12):7733–7739. [PubMed] [Google Scholar]
  37. Rumpel E., Pilatus U., Mayer A., Pecht I. Na+ and Ca2+ gradients across the membrane modulate the secretory response of mast cells. Int Arch Allergy Immunol. 1995 May-Jun;107(1-3):351–353. doi: 10.1159/000237029. [DOI] [PubMed] [Google Scholar]
  38. Sagi-Eisenberg R., Pecht I. Membrane potential changes during IgE-mediated histamine release from rat basophilic leukemia cells. J Membr Biol. 1983;75(2):97–104. doi: 10.1007/BF01995629. [DOI] [PubMed] [Google Scholar]
  39. Sagi-Eisenberg R., Pecht I. Resolution of cellular compartments involved in membrane potential changes accompanying IgE-mediated degranulation of rat basophilic leukemia cells. EMBO J. 1984 Mar;3(3):497–500. doi: 10.1002/j.1460-2075.1984.tb01836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shinar H., Navon G. NMR relaxation studies of intracellular Na+ in red blood cells. Biophys Chem. 1984 Nov;20(4):275–283. doi: 10.1016/0301-4622(84)80018-6. [DOI] [PubMed] [Google Scholar]
  41. Simchowitz L., Cragoe E. J., Jr Na+-Ca2+ exchange in human neutrophils. Am J Physiol. 1988 Jan;254(1 Pt 1):C150–C164. doi: 10.1152/ajpcell.1988.254.1.C150. [DOI] [PubMed] [Google Scholar]
  42. Stump R. F., Oliver J. M., Cragoe E. J., Jr, Deanin G. G. The control of mediator release from RBL-2H3 cells: roles for Ca2+, Na+, and protein kinase C1. J Immunol. 1987 Aug 1;139(3):881–886. [PubMed] [Google Scholar]
  43. Sussman Y., Reck B., Pecht I. Mutual relationship among cytosolic pH, Na+ and Ca2+ ions in the degranulation of rat leukemic basophils. Immunol Lett. 1986 Oct;13(4):215–219. doi: 10.1016/0165-2478(86)90058-1. [DOI] [PubMed] [Google Scholar]
  44. Takuma K., Matsuda T., Hashimoto H., Asano S., Baba A. Cultured rat astrocytes possess Na(+)-Ca2+ exchanger. Glia. 1994 Dec;12(4):336–342. doi: 10.1002/glia.440120410. [DOI] [PubMed] [Google Scholar]
  45. Trosper T. L., Philipson K. D. Effects of divalent and trivalent cations on Na+-Ca2+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1983 May 26;731(1):63–68. doi: 10.1016/0005-2736(83)90398-x. [DOI] [PubMed] [Google Scholar]
  46. Zhang L., McCloskey M. A. Immunoglobulin E receptor-activated calcium conductance in rat mast cells. J Physiol. 1995 Feb 15;483(Pt 1):59–66. doi: 10.1113/jphysiol.1995.sp020567. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES