Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3001–3008. doi: 10.1016/S0006-3495(00)76536-2

Interferon-gamma and sinusoidal electric fields signal by modulating NAD(P)H oscillations in polarized neutrophils.

A J Rosenspire 1, A L Kindzelskii 1, H R Petty 1
PMCID: PMC1301178  PMID: 11106607

Abstract

Metabolic activity in eukaryotic cells is known to naturally oscillate. We have recently observed a 20-s period NAD(P)H oscillation in neutrophils and other polarized cells. Here we show that when polarized human neutrophils are exposed to interferon-gamma or to ultra-low-frequency electric fields with periods double that of the NAD(P)H oscillation, the amplitude of the NAD(P)H oscillations increases. Furthermore, increases in NAD(P)H amplitude, whether mediated by interferon-gamma or by an oscillating electric field, signals increased production of reactive oxygen metabolites. Hence, amplitude modulation of NAD(P)H oscillations suggests a novel signaling mechanism in polarized cells.

Full Text

The Full Text of this article is available as a PDF (155.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Kindzelskii A. L., Ohno N., Yadomae T., Petty H. R. Amplitude and frequency modulation of metabolic signals in leukocytes: synergistic role of IFN-gamma in IL-6- and IL-2-mediated cell activation. J Immunol. 1999 Oct 15;163(8):4367–4374. [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. The AM and FM of calcium signalling. Nature. 1997 Apr 24;386(6627):759–760. doi: 10.1038/386759a0. [DOI] [PubMed] [Google Scholar]
  4. Berton G., Zeni L., Cassatella M. A., Rossi F. Gamma interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1276–1282. doi: 10.1016/s0006-291x(86)80421-1. [DOI] [PubMed] [Google Scholar]
  5. Corkey B. E., Tornheim K., Deeney J. T., Glennon M. C., Parker J. C., Matschinsky F. M., Ruderman N. B., Prentki M. Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J Biol Chem. 1988 Mar 25;263(9):4254–4258. [PubMed] [Google Scholar]
  6. Cross C. E., Halliwell B., Borish E. T., Pryor W. A., Ames B. N., Saul R. L., McCord J. M., Harman D. Oxygen radicals and human disease. Ann Intern Med. 1987 Oct;107(4):526–545. doi: 10.7326/0003-4819-107-4-526. [DOI] [PubMed] [Google Scholar]
  7. De Koninck P., Schulman H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998 Jan 9;279(5348):227–230. doi: 10.1126/science.279.5348.227. [DOI] [PubMed] [Google Scholar]
  8. Dolmetsch R. E., Lewis R. S., Goodnow C. C., Healy J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997 Apr 24;386(6627):855–858. doi: 10.1038/386855a0. [DOI] [PubMed] [Google Scholar]
  9. Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
  10. Gu X., Spitzer N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature. 1995 Jun 29;375(6534):784–787. doi: 10.1038/375784a0. [DOI] [PubMed] [Google Scholar]
  11. Hess B., Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem. 1971;40:237–258. doi: 10.1146/annurev.bi.40.070171.001321. [DOI] [PubMed] [Google Scholar]
  12. Kindzelskii A. L., Eszes M. M., Todd R. F., 3rd, Petty H. R. Proximity oscillations of complement type 4 (alphaX beta2) and urokinase receptors on migrating neutrophils. Biophys J. 1997 Oct;73(4):1777–1784. doi: 10.1016/S0006-3495(97)78208-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kindzelskii A. L., Petty H. R. Extremely low frequency pulsed DC electric fields promote neutrophil extension, metabolic resonance and DNA damage when phase-matched with metabolic oscillators. Biochim Biophys Acta. 2000 Jan 10;1495(1):90–111. doi: 10.1016/s0167-4889(99)00148-2. [DOI] [PubMed] [Google Scholar]
  14. Kindzelskii A. L., Petty H. R. Ultrasensitive detection of hydrogen peroxide-mediated DNA damage after alkaline single cell gel electrophoresis using occultation microscopy and TUNEL labeling. Mutat Res. 1999 May 3;426(1):11–22. doi: 10.1016/s0027-5107(99)00081-0. [DOI] [PubMed] [Google Scholar]
  15. Kindzelskii A. L., Zhou M. J., Haugland R. P., Boxer L. A., Petty H. R. Oscillatory pericellular proteolysis and oxidant deposition during neutrophil locomotion. Biophys J. 1998 Jan;74(1):90–97. doi: 10.1016/S0006-3495(98)77770-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li W., Llopis J., Whitney M., Zlokarnik G., Tsien R. Y. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature. 1998 Apr 30;392(6679):936–941. doi: 10.1038/31965. [DOI] [PubMed] [Google Scholar]
  17. Petty H. R., Worth R. G., Kindzelskii A. L. Imaging sustained dissipative patterns in the metabolism of individual living cells. Phys Rev Lett. 2000 Mar 20;84(12):2754–2757. doi: 10.1103/PhysRevLett.84.2754. [DOI] [PubMed] [Google Scholar]
  18. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  19. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES