Abstract
The role of inactivation as a central mechanism in blockade of the cardiac Na(+) channel by antiarrhythmic drugs remains uncertain. We have used whole-cell and single channel recordings to examine the block of wild-type and inactivation-deficient mutant cardiac Na(+) channels, IFM/QQQ, stably expressed in HEK-293 cells. We studied the open-channel blockers disopyramide and flecainide, and the lidocaine derivative RAD-243. All three drugs blocked the wild-type Na(+) channel in a use-dependent manner. There was no use-dependent block of IFM/QQQ mutant channels with trains of 20 40-ms pulses at 150-ms interpulse intervals during disopyramide exposure. Flecainide and RAD-243 retained their use-dependent blocking action and accelerated macroscopic current relaxation. All three drugs reduced the mean open time of single channels and increased the probability of their failure to open. From the abbreviation of the mean open times, we estimated association rates of approximately 10(6)/M/s for the three drugs. Reducing the burst duration contributed to the acceleration of macroscopic current relaxation during exposure to flecainide and RAD-243. The qualitative differences in use-dependent block appear to be the result of differences in drug dissociation rate. The inactivation gate may play a trapping role during exposure to some sodium channel blocking drugs.
Full Text
The Full Text of this article is available as a PDF (260.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. M., Bezanilla F., Rojas E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol. 1973 Oct;62(4):375–391. doi: 10.1085/jgp.62.4.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balser J. R., Nuss H. B., Orias D. W., Johns D. C., Marban E., Tomaselli G. F., Lawrence J. H. Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels. J Clin Invest. 1996 Dec 15;98(12):2874–2886. doi: 10.1172/JCI119116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber M. J., Wendt D. J., Starmer C. F., Grant A. O. Blockade of cardiac sodium channels. Competition between the permeant ion and antiarrhythmic drugs. J Clin Invest. 1992 Aug;90(2):368–381. doi: 10.1172/JCI115871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bean B. P., Cohen C. J., Tsien R. W. Lidocaine block of cardiac sodium channels. J Gen Physiol. 1983 May;81(5):613–642. doi: 10.1085/jgp.81.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett E. S. Effects of channel cytoplasmic regions on the activation mechanisms of cardiac versus skeletal muscle Na(+) channels. Biophys J. 1999 Dec;77(6):2999–3009. doi: 10.1016/S0006-3495(99)77131-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett P. B., Valenzuela C., Chen L. Q., Kallen R. G. On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res. 1995 Sep;77(3):584–592. doi: 10.1161/01.res.77.3.584. [DOI] [PubMed] [Google Scholar]
- Bénitah J. P., Tomaselli G. F., Marban E. Adjacent pore-lining residues within sodium channels identified by paired cysteine mutagenesis. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7392–7396. doi: 10.1073/pnas.93.14.7392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell T. J., Vaughan Williams E. M. Voltage- and time-dependent depression of maximum rate of depolarisation of guinea-pig ventricular action potentials by two new antiarrhythmic drugs, flecainide and lorcainide. Cardiovasc Res. 1983 May;17(5):251–258. doi: 10.1093/cvr/17.5.251. [DOI] [PubMed] [Google Scholar]
- Carmeliet E. Activation block and trapping of penticainide, a disopyramide analogue, in the Na+ channel of rabbit cardiac Purkinje fibers. Circ Res. 1988 Jul;63(1):50–60. doi: 10.1161/01.res.63.1.50. [DOI] [PubMed] [Google Scholar]
- Carmeliet E., Nilius B., Vereecke J. Properties of the block of single Na+ channels in guinea-pig ventricular myocytes by the local anaesthetic penticainide. J Physiol. 1989 Feb;409:241–262. doi: 10.1113/jphysiol.1989.sp017495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandra R., Starmer C. F., Grant A. O. Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am J Physiol. 1998 May;274(5 Pt 2):H1643–H1654. doi: 10.1152/ajpheart.1998.274.5.H1643. [DOI] [PubMed] [Google Scholar]
- Chiamvimonvat N., Kargacin M. E., Clark R. B., Duff H. J. Effects of intracellular calcium on sodium current density in cultured neonatal rat cardiac myocytes. J Physiol. 1995 Mar 1;483(Pt 2):307–318. doi: 10.1113/jphysiol.1995.sp020587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarkson C. W., Follmer C. H., Ten Eick R. E., Hondeghem L. M., Yeh J. Z. Evidence for two components of sodium channel block by lidocaine in isolated cardiac myocytes. Circ Res. 1988 Nov;63(5):869–878. doi: 10.1161/01.res.63.5.869. [DOI] [PubMed] [Google Scholar]
- Cohen S. A., Barchi R. L. Voltage-dependent sodium channels. Int Rev Cytol. 1993;137C:55–103. [PubMed] [Google Scholar]
- Courtney K. R. Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA. J Pharmacol Exp Ther. 1975 Nov;195(2):225–236. [PubMed] [Google Scholar]
- Gilliam F. R., 3rd, Starmer C. F., Grant A. O. Blockade of rabbit atrial sodium channels by lidocaine. Characterization of continuous and frequency-dependent blocking. Circ Res. 1989 Sep;65(3):723–739. doi: 10.1161/01.res.65.3.723. [DOI] [PubMed] [Google Scholar]
- Gingrich K. J., Beardsley D., Yue D. T. Ultra-deep blockade of Na+ channels by a quaternary ammonium ion: catalysis by a transition-intermediate state? J Physiol. 1993 Nov;471:319–341. doi: 10.1113/jphysiol.1993.sp019903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giraud P., Alcaraz G., Jullien F., Sampo B., Jover E., Couraud F., Dargent B. Multiple pathways regulate the expression of genes encoding sodium channel subunits in developing neurons. Brain Res Mol Brain Res. 1998 May;56(1-2):238–255. doi: 10.1016/s0169-328x(98)00067-9. [DOI] [PubMed] [Google Scholar]
- Grant A. O., Dietz M. A., Gilliam F. R., 3rd, Starmer C. F. Blockade of cardiac sodium channels by lidocaine. Single-channel analysis. Circ Res. 1989 Nov;65(5):1247–1262. doi: 10.1161/01.res.65.5.1247. [DOI] [PubMed] [Google Scholar]
- Grant A. O., John J. E., Nesterenko V. V., Starmer C. F., Moorman J. R. The role of inactivation in open-channel block of the sodium channel: studies with inactivation-deficient mutant channels. Mol Pharmacol. 1996 Dec;50(6):1643–1650. [PubMed] [Google Scholar]
- Grant A. O., Starmer C. F. Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single-channel analysis. Circ Res. 1987 Jun;60(6):897–913. doi: 10.1161/01.res.60.6.897. [DOI] [PubMed] [Google Scholar]
- Grant A. O., Wendt D. J., Zilberter Y., Starmer C. F. Kinetics of interaction of disopyramide with the cardiac sodium channel: fast dissociation from open channels at normal rest potentials. J Membr Biol. 1993 Nov;136(2):199–214. doi: 10.1007/BF02505764. [DOI] [PubMed] [Google Scholar]
- Hanck D. A., Makielski J. C., Sheets M. F. Lidocaine alters activation gating of cardiac Na channels. Pflugers Arch. 2000 Apr;439(6):814–821. doi: 10.1007/s004249900217. [DOI] [PubMed] [Google Scholar]
- Hartmann H. A., Tiedeman A. A., Chen S. F., Brown A. M., Kirsch G. E. Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Circ Res. 1994 Jul;75(1):114–122. doi: 10.1161/01.res.75.1.114. [DOI] [PubMed] [Google Scholar]
- Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmgren M., Smith P. L., Yellen G. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J Gen Physiol. 1997 May;109(5):527–535. doi: 10.1085/jgp.109.5.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
- Hurwitz J. L., Dietz M. A., Starmer C. F., Grant A. O. A source of bias in the analysis of single channel data: assessing the apparent interaction between channel proteins. Comput Biomed Res. 1991 Dec;24(6):584–602. doi: 10.1016/0010-4809(91)90042-u. [DOI] [PubMed] [Google Scholar]
- Koumi S., Sato R., Hisatome I., Hayakawa H., Okumura H., Katori R. Disopyramide block of cardiac sodium current after removal of the fast inactivation process in guinea pig ventricular myocytes. J Pharmacol Exp Ther. 1992 Jun;261(3):1167–1174. [PubMed] [Google Scholar]
- Kuo C. C., Bean B. P. Na+ channels must deactivate to recover from inactivation. Neuron. 1994 Apr;12(4):819–829. doi: 10.1016/0896-6273(94)90335-2. [DOI] [PubMed] [Google Scholar]
- Lawrence J. H., Orias D. W., Balser J. R., Nuss H. B., Tomaselli G. F., O'Rourke B., Marban E. Single-channel analysis of inactivation-defective rat skeletal muscle sodium channels containing the F1304Q mutation. Biophys J. 1996 Sep;71(3):1285–1294. doi: 10.1016/S0006-3495(96)79329-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Wendt D. J., Grant A. O. Relationship between structure and sodium channel blockade by lidocaine and its amino-alkyl derivatives. J Cardiovasc Pharmacol. 1994 Nov;24(5):803–812. doi: 10.1097/00005344-199424050-00016. [DOI] [PubMed] [Google Scholar]
- Neher E. The charge carried by single-channel currents of rat cultured muscle cells in the presence of local anaesthetics. J Physiol. 1983 Jun;339:663–678. doi: 10.1113/jphysiol.1983.sp014741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nitta J., Sunami A., Marumo F., Hiraoka M. States and sites of actions of flecainide on guinea-pig cardiac sodium channels. Eur J Pharmacol. 1992 Apr 22;214(2-3):191–197. doi: 10.1016/0014-2999(92)90118-n. [DOI] [PubMed] [Google Scholar]
- Sanchez-Chapula J., Tsuda Y., Josephson I. R. Voltage- and use-dependent effects of lidocaine on sodium current in rat single ventricular cells. Circ Res. 1983 May;52(5):557–565. doi: 10.1161/01.res.52.5.557. [DOI] [PubMed] [Google Scholar]
- Starmer C. F., Grant A. O. Phasic ion channel blockade. A kinetic model and parameter estimation procedure. Mol Pharmacol. 1985 Oct;28(4):348–356. [PubMed] [Google Scholar]
- Starmer C. F., Nesterenko V. V., Undrovinas A. I., Grant A. O., Rosenshtraukh L. V. Lidocaine blockade of continuously and transiently accessible sites in cardiac sodium channels. J Mol Cell Cardiol. 1991 Feb;23 (Suppl 1):73–83. doi: 10.1016/0022-2828(91)90026-i. [DOI] [PubMed] [Google Scholar]
- Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sunami A., Fan Z., Nitta J., Hiraoka M. Two components of use-dependent block of Na+ current by disopyramide and lidocaine in guinea pig ventricular myocytes. Circ Res. 1991 Mar;68(3):653–661. doi: 10.1161/01.res.68.3.653. [DOI] [PubMed] [Google Scholar]
- Vedantham V., Cannon S. C. The position of the fast-inactivation gate during lidocaine block of voltage-gated Na+ channels. J Gen Physiol. 1999 Jan;113(1):7–16. doi: 10.1085/jgp.113.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang G. K., Brodwick M. S., Eaton D. C., Strichartz G. R. Inhibition of sodium currents by local anesthetics in chloramine-T-treated squid axons. The role of channel activation. J Gen Physiol. 1987 Apr;89(4):645–667. doi: 10.1085/jgp.89.4.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasserstrom J. A., Liberty K., Kelly J., Santucci P., Myers M. Modification of cardiac Na+ channels by batrachotoxin: effects on gating, kinetics, and local anesthetic binding. Biophys J. 1993 Jul;65(1):386–395. doi: 10.1016/S0006-3495(93)81046-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeh J. Z., TenEick R. E. Molecular and structural basis of resting and use-dependent block of sodium current defined using disopyramide analogues. Biophys J. 1987 Jan;51(1):123–135. doi: 10.1016/S0006-3495(87)83317-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaborovskaya L. D., Khodorov B. I. The role of inactivation in the cumulative blockage of voltage-dependent sodium channels by local anesthetics and antiarrythmics. Gen Physiol Biophys. 1984 Dec;3(6):517–520. [PubMed] [Google Scholar]
- Zilberter Y. I., Starmer C. F., Grant A. O. Open Na+ channel blockade: multiple rest states revealed by channel interactions with disopyramide and quinidine. Am J Physiol. 1994 May;266(5 Pt 2):H2007–H2017. doi: 10.1152/ajpheart.1994.266.5.H2007. [DOI] [PubMed] [Google Scholar]