Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3063–3071. doi: 10.1016/S0006-3495(00)76541-6

Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study.

J Isele 1, T P Sakmar 1, F Siebert 1
PMCID: PMC1301183  PMID: 11106612

Abstract

Rhodopsin is a member of a superfamily of G-protein-coupled receptors that transduce signals across membranes. We used Fourier-transform infrared (FTIR) difference spectroscopy to study the interaction between rhodopsin and lipid bilayer upon receptor activation. A difference band at 1744 cm(-1) (+)/1727 cm(-1) (-) was identified in the FTIR-difference spectrum of rhodopsin mutant D83N/E122Q in which spectral difference bands arising from the carbonyl stretching frequencies of protonated carboxylic acid groups were removed by mutation. As the band was abolished by detergent delipidation, we suggested that it arose from carbonyl groups of phospholipid fatty acid esters. Rhodopsin and the D83N/E122Q mutant were reconstituted into various (13)C-labeled 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine vesicles and probed. The 1744-cm(-1) (+)/1727 cm(-1) (-) band could be unequivocally assigned to a change in the lipid ester carbonyl stretch upon receptor activation, with roughly equal contribution from both lipid esters. The band intensity scaled with the amount of rhodopsin but not with the amount of lipid, excluding the possibility that it was due to the bulk lipid phase. We also excluded the possibility that the lipid band represents a change in the number of boundary lipids or a general alteration in the boundary lipid environment upon formation of metarhodopsin II. Instead, the data suggest that the lipid band represents the change of a specific lipid-receptor interaction that is coupled to protein conformational changes.

Full Text

The Full Text of this article is available as a PDF (106.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Zuckerman D. M., Lamola A. A., Jovin T. M. Rhodopsin. Purification and recombination with phospholipids assayed by the metarhodopsin I leads to metarhodopsin II transition. Biochemistry. 1974 Aug 13;13(17):3448–3458. doi: 10.1021/bi00714a005. [DOI] [PubMed] [Google Scholar]
  2. Attwood P. V., Gutfreund H. The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retinas. FEBS Lett. 1980 Oct 6;119(2):323–326. doi: 10.1016/0014-5793(80)80281-x. [DOI] [PubMed] [Google Scholar]
  3. Baldwin P. A., Hubbell W. L. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes. Biochemistry. 1985 May 21;24(11):2624–2632. doi: 10.1021/bi00332a006. [DOI] [PubMed] [Google Scholar]
  4. Beck M., Sakmar T. P., Siebert F. Spectroscopic evidence for interaction between transmembrane helices 3 and 5 in rhodopsin. Biochemistry. 1998 May 19;37(20):7630–7639. doi: 10.1021/bi9801560. [DOI] [PubMed] [Google Scholar]
  5. Beck M., Siebert F., Sakmar T. P. Evidence for the specific interaction of a lipid molecule with rhodopsin which is altered in the transition to the active state metarhodopsin II. FEBS Lett. 1998 Oct 9;436(3):304–308. doi: 10.1016/s0014-5793(98)01156-9. [DOI] [PubMed] [Google Scholar]
  6. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  7. Davoust J., Bienvenue A., Fellmann P., Devaux P. F. Boundary lipids and protein mobility in rhodopsin-phosphatidylcholine vesicles. Effect of lipid phase transitions. Biochim Biophys Acta. 1980 Feb 15;596(1):28–42. doi: 10.1016/0005-2736(80)90168-6. [DOI] [PubMed] [Google Scholar]
  8. Davoust J., Seigneuret M., Hervé P., Devaux P. F. Collisions between nitrogen-14 and nitrogen-15 spin-labels. 2. Investigations on the specificity of the lipid environment of rhodopsin. Biochemistry. 1983 Jun 21;22(13):3146–3151. doi: 10.1021/bi00282a017. [DOI] [PubMed] [Google Scholar]
  9. Delange F., Merkx M., Bovee-Geurts P. H., Pistorius A. M., Degrip W. J. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect. Eur J Biochem. 1997 Jan 15;243(1-2):174–180. doi: 10.1111/j.1432-1033.1997.0174a.x. [DOI] [PubMed] [Google Scholar]
  10. Ernst O. P., Meyer C. K., Marin E. P., Henklein P., Fu W. Y., Sakmar T. P., Hofmann K. P. Mutation of the fourth cytoplasmic loop of rhodopsin affects binding of transducin and peptides derived from the carboxyl-terminal sequences of transducin alpha and gamma subunits. J Biol Chem. 2000 Jan 21;275(3):1937–1943. doi: 10.1074/jbc.275.3.1937. [DOI] [PubMed] [Google Scholar]
  11. Fahmy K., Jäger F., Beck M., Zvyaga T. A., Sakmar T. P., Siebert F. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10206–10210. doi: 10.1073/pnas.90.21.10206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fahmy K., Sakmar T. P., Siebert F. Transducin-dependent protonation of glutamic acid 134 in rhodopsin. Biochemistry. 2000 Aug 29;39(34):10607–10612. doi: 10.1021/bi000912d. [DOI] [PubMed] [Google Scholar]
  13. Farahbakhsh Z. T., Hideg K., Hubbell W. L. Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science. 1993 Nov 26;262(5138):1416–1419. doi: 10.1126/science.8248781. [DOI] [PubMed] [Google Scholar]
  14. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  15. Felber S., Breuer H. P., Petruccione F., Honerkamp J., Hofmann K. P. Stochastic simulation of the transducin GTPase cycle. Biophys J. 1996 Dec;71(6):3051–3063. doi: 10.1016/S0006-3495(96)79499-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ganter U. M., Schmid E. D., Perez-Sala D., Rando R. R., Siebert F. Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry. 1989 Jul 11;28(14):5954–5962. doi: 10.1021/bi00440a036. [DOI] [PubMed] [Google Scholar]
  17. Gibson N. J., Brown M. F. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry. 1993 Mar 9;32(9):2438–2454. doi: 10.1021/bi00060a040. [DOI] [PubMed] [Google Scholar]
  18. Han M., Groesbeek M., Smith S. O., Sakmar T. P. Role of the C9 methyl group in rhodopsin activation: characterization of mutant opsins with the artificial chromophore 11-cis-9-demethylretinal. Biochemistry. 1998 Jan 13;37(2):538–545. doi: 10.1021/bi972060w. [DOI] [PubMed] [Google Scholar]
  19. Helmreich E. J., Hofmann K. P. Structure and function of proteins in G-protein-coupled signal transfer. Biochim Biophys Acta. 1996 Oct 29;1286(3):285–322. doi: 10.1016/s0304-4157(96)00013-5. [DOI] [PubMed] [Google Scholar]
  20. Jäger F., Jäger S., Krütle O., Friedman N., Sheves M., Hofmann K. P., Siebert F. Interactions of the beta-ionone ring with the protein in the visual pigment rhodopsin control the activation mechanism. An FTIR and fluorescence study on artificial vertebrate rhodopsins. Biochemistry. 1994 Jun 14;33(23):7389–7397. doi: 10.1021/bi00189a045. [DOI] [PubMed] [Google Scholar]
  21. Kamps K. M., De Grip W. J., Daemen F. J. Use of a density modification technique for isolation of the plasma membrane of rod outer segments. Biochim Biophys Acta. 1982 May 7;687(2):296–302. doi: 10.1016/0005-2736(82)90558-2. [DOI] [PubMed] [Google Scholar]
  22. Lamb T. D. Stochastic simulation of activation in the G-protein cascade of phototransduction. Biophys J. 1994 Oct;67(4):1439–1454. doi: 10.1016/S0006-3495(94)80617-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lamola A. A., Yamane T., Zipp A. Effects of detergents and high pressures upon the metarhodopsin I--metarhodopsin II equilibrium. Biochemistry. 1974 Feb 12;13(4):738–745. doi: 10.1021/bi00701a016. [DOI] [PubMed] [Google Scholar]
  24. Lewis R. N., McElhaney R. N., Pohle W., Mantsch H. H. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J. 1994 Dec;67(6):2367–2375. doi: 10.1016/S0006-3495(94)80723-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marin E. P., Krishna A. G., Zvyaga T. A., Isele J., Siebert F., Sakmar T. P. The amino terminus of the fourth cytoplasmic loop of rhodopsin modulates rhodopsin-transducin interaction. J Biol Chem. 2000 Jan 21;275(3):1930–1936. doi: 10.1074/jbc.275.3.1930. [DOI] [PubMed] [Google Scholar]
  26. Mitchell D. C., Litman B. J. Effect of protein hydration on receptor conformation: decreased levels of bound water promote metarhodopsin II formation. Biochemistry. 1999 Jun 15;38(24):7617–7623. doi: 10.1021/bi990634m. [DOI] [PubMed] [Google Scholar]
  27. Mitchell D. C., Straume M., Litman B. J. Role of sn-1-saturated,sn-2-polyunsaturated phospholipids in control of membrane receptor conformational equilibrium: effects of cholesterol and acyl chain unsaturation on the metarhodopsin I in equilibrium with metarhodopsin II equilibrium. Biochemistry. 1992 Jan 28;31(3):662–670. doi: 10.1021/bi00118a005. [DOI] [PubMed] [Google Scholar]
  28. Moench S. J., Moreland J., Stewart D. H., Dewey T. G. Fluorescence studies of the location and membrane accessibility of the palmitoylation sites of rhodopsin. Biochemistry. 1994 May 17;33(19):5791–5796. doi: 10.1021/bi00185a017. [DOI] [PubMed] [Google Scholar]
  29. Motoyama H., Hamanaka T., Kawase N., Boucher F., Kitô Y. Effect of phospholipids and detergents on transitions and equilibrium between the bleaching intermediates of rhodopsin. Can J Biochem Cell Biol. 1985 Nov;63(11):1152–1159. doi: 10.1139/o85-143. [DOI] [PubMed] [Google Scholar]
  30. Nollert P., Kiefer H., Jähnig F. Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. Biophys J. 1995 Oct;69(4):1447–1455. doi: 10.1016/S0006-3495(95)80014-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Brien D. F., Costa L. F., Ott R. A. Photochemical functionality of rhodopsin-phospholipid recombinant membranes. Biochemistry. 1977 Apr 5;16(7):1295–1303. doi: 10.1021/bi00626a009. [DOI] [PubMed] [Google Scholar]
  32. Ovchinnikov YuA, Abdulaev N. G., Bogachuk A. S. Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett. 1988 Mar 28;230(1-2):1–5. doi: 10.1016/0014-5793(88)80628-8. [DOI] [PubMed] [Google Scholar]
  33. Papac D. I., Thornburg K. R., Büllesbach E. E., Crouch R. K., Knapp D. R. Palmitylation of a G-protein coupled receptor. Direct analysis by tandem mass spectrometry. J Biol Chem. 1992 Aug 25;267(24):16889–16894. [PubMed] [Google Scholar]
  34. Pates R. D., Watts A., Uhl R., Marsh D. Lipid-protein interactions in frog rod outer segment disc membranes. Characterization by spin labels. Biochim Biophys Acta. 1985 Apr 11;814(2):389–397. doi: 10.1016/0005-2736(85)90460-2. [DOI] [PubMed] [Google Scholar]
  35. Pepperberg D. R., Morrison D. F., O'Brien P. J. Depalmitoylation of rhodopsin with hydroxylamine. Methods Enzymol. 1995;250:348–361. doi: 10.1016/0076-6879(95)50084-7. [DOI] [PubMed] [Google Scholar]
  36. Pohle W., Selle C., Fritzsche H., Binder H. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy. 1998;4(4):267–280. doi: 10.1002/(sici)1520-6343(1998)4:4<267::aid-bspy5>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  37. Rath P., DeCaluwé L. L., Bovee-Geurts P. H., DeGrip W. J., Rothschild K. J. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Biochemistry. 1993 Oct 5;32(39):10277–10282. doi: 10.1021/bi00090a001. [DOI] [PubMed] [Google Scholar]
  38. Ryba N. J., Horváth L. I., Watts A., Marsh D. Molecular exchange at the lipid-rhodopsin interface: spin-label electron spin resonance studies of rhodopsin-dimyristoylphosphatidylcholine recombinants. Biochemistry. 1987 Jun 2;26(11):3234–3240. doi: 10.1021/bi00385a045. [DOI] [PubMed] [Google Scholar]
  39. Sakmar T. P. Rhodopsin: a prototypical G protein-coupled receptor. Prog Nucleic Acid Res Mol Biol. 1998;59:1–34. doi: 10.1016/s0079-6603(08)61027-2. [DOI] [PubMed] [Google Scholar]
  40. Schleicher A., Franke R., Hofmann K. P., Finkelmann H., Welte W. Deoxylysolecithin and a new biphenyl detergent as solubilizing agents for bovine rhodopsin. Functional test by formation of metarhodopsin II and binding of G-protein. Biochemistry. 1987 Sep 8;26(18):5908–5916. doi: 10.1021/bi00392a050. [DOI] [PubMed] [Google Scholar]
  41. Selle C., Pohle W. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. II. Water binding versus phase transitions. Biospectroscopy. 1998;4(4):281–294. doi: 10.1002/(sici)1520-6343(1998)4:4<281::aid-bspy6>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  42. Sheikh S. P., Zvyaga T. A., Lichtarge O., Sakmar T. P., Bourne H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature. 1996 Sep 26;383(6598):347–350. doi: 10.1038/383347a0. [DOI] [PubMed] [Google Scholar]
  43. Zumbulyadis N., O'Brien D. F. Proton and carbon-13 nuclear magnetic resonance studies of rhodopsin-phospholipid interactions. Biochemistry. 1979 Nov 27;18(24):5427–5432. doi: 10.1021/bi00591a027. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES