Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3153–3163. doi: 10.1016/S0006-3495(00)76549-0

From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: an atomic force microscopy study.

J Jass 1, T Tjärnhage 1, G Puu 1
PMCID: PMC1301191  PMID: 11106620

Abstract

The sequence of events involved in the transition from attached liposomes to bilayer patches on hydrophilic and hydrophobic solid supports were visualized in situ by Tapping Mode atomic force microscopy in liquid. In a smooth manner, the attached liposomes spread and flattened from the outer edges toward the center until the two membrane bilayers were stacked on top of each other. The top bilayer then either rolls or slides over the bottom bilayer, and the adjacent edges join to form a larger membrane patch. This is clearly visible from the apparent height of 6.0-7.5 nm of the single bilayer, measured in situ. The addition of calcium appeared to increase the rate of the processes preventing the visualization of the intermediate stages. The same intermediate steps appeared to be present on hydrophobic surfaces, although the attached liposomes seemed to be distorted and the resultant membrane edges were uneven. This work has provided visual and detailed information on liposome coalescence (fusion) onto solid supports and demonstrated how the atomic force microscope can be used to study the process.

Full Text

The Full Text of this article is available as a PDF (442.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann M., Nollert P., Kolb H. A. Manipulation and molecular resolution of a phosphatidylcholine-supported planar bilayer by atomic force microscopy. J Membr Biol. 1998 Feb 1;161(3):227–233. doi: 10.1007/s002329900329. [DOI] [PubMed] [Google Scholar]
  2. Carlson J. W., Jonas A., Sligar S. G. Imaging and manipulation of high-density lipoproteins. Biophys J. 1997 Sep;73(3):1184–1189. doi: 10.1016/S0006-3495(97)78150-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Contino P. B., Hasselbacher C. A., Ross J. B., Nemerson Y. Use of an oriented transmembrane protein to probe the assembly of a supported phospholipid bilayer. Biophys J. 1994 Sep;67(3):1113–1116. doi: 10.1016/S0006-3495(94)80577-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csúcs G., Ramsden J. J. Interaction of phospholipid vesicles with smooth metal-oxide surfaces. Biochim Biophys Acta. 1998 Feb 2;1369(1):61–70. doi: 10.1016/s0005-2736(97)00209-5. [DOI] [PubMed] [Google Scholar]
  5. Grandbois M., Clausen-Schaumann H., Gaub H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys J. 1998 May;74(5):2398–2404. doi: 10.1016/S0006-3495(98)77948-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hui S. W., Viswanathan R., Zasadzinski J. A., Israelachvili J. N. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys J. 1995 Jan;68(1):171–178. doi: 10.1016/S0006-3495(95)80172-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  8. Keller C. A., Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J. 1998 Sep;75(3):1397–1402. doi: 10.1016/S0006-3495(98)74057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  10. Mimms L. T., Zampighi G., Nozaki Y., Tanford C., Reynolds J. A. Phospholipid vesicle formation and transmembrane protein incorporation using octyl glucoside. Biochemistry. 1981 Feb 17;20(4):833–840. doi: 10.1021/bi00507a028. [DOI] [PubMed] [Google Scholar]
  11. Müller D. J., Amrein M., Engel A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol. 1997 Jul;119(2):172–188. doi: 10.1006/jsbi.1997.3875. [DOI] [PubMed] [Google Scholar]
  12. Müller D. J., Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J. 1997 Sep;73(3):1633–1644. doi: 10.1016/S0006-3495(97)78195-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nollert P., Kiefer H., Jähnig F. Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. Biophys J. 1995 Oct;69(4):1447–1455. doi: 10.1016/S0006-3495(95)80014-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pignataro B., Steinem C., Galla H. J., Fuchs H., Janshoff A. Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophys J. 2000 Jan;78(1):487–498. doi: 10.1016/S0006-3495(00)76611-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Puu G., Artursson E., Gustafson I., Lundström M., Jass J. Distribution and stability of membrane proteins in lipid membranes on solid supports. Biosens Bioelectron. 2000 Mar;15(1-2):31–41. doi: 10.1016/s0956-5663(00)00050-6. [DOI] [PubMed] [Google Scholar]
  16. Puu G., Gustafson I., Artursson E., Ohlsson P. A. Retained activities of some membrane proteins in stable lipid bilayers on a solid support. Biosens Bioelectron. 1995;10(5):463–476. doi: 10.1016/0956-5663(95)96892-3. [DOI] [PubMed] [Google Scholar]
  17. Puu G., Gustafson I. Planar lipid bilayers on solid supports from liposomes--factors of importance for kinetics and stability. Biochim Biophys Acta. 1997 Jul 25;1327(2):149–161. doi: 10.1016/s0005-2736(97)00052-7. [DOI] [PubMed] [Google Scholar]
  18. Salafsky J., Groves J. T., Boxer S. G. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996 Nov 26;35(47):14773–14781. doi: 10.1021/bi961432i. [DOI] [PubMed] [Google Scholar]
  19. Santos N. C., Ter-Ovanesyan E., Zasadzinski J. A., Castanho M. A. Reconstitution of phospholipid bilayer by an atomic force microscope tip. Biophys J. 1998 Oct;75(4):2119–2120. doi: 10.1016/S0006-3495(98)77654-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  21. Singh S., Keller D. J. Atomic force microscopy of supported planar membrane bilayers. Biophys J. 1991 Dec;60(6):1401–1410. doi: 10.1016/S0006-3495(91)82177-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES