Abstract
A pressure-driven captive bubble surfactometer was used to determine the role of surfactant proteins in refinement of the surface film. The advantage of this apparatus is that surface films can be spread at the interface of an air bubble with a different lipid/protein composition than the subphase vesicles. Using different combinations of subphase vesicles and spread surface films a clear correlation between dipalmitoylphosphatidylcholine (DPPC) content and minimum surface tension was observed. Spread phospholipid films containing 50% DPPC over a subphase containing 50% DPPC vesicles did not form stable surface films with a low minimum surface tension. Addition of surfactant protein B (SP-B) to the surface film led to a progressive decrease in minimum surface tension toward 1 mN/m upon cycling, indicating an enrichment in DPPC. Surfactant protein C (SP-C) had no such detectable refining effect on the film. Surfactant protein A (SP-A) had a positive effect on refinement when it was present in the subphase. However, this effect was only observed when SP-A was combined with SP-B and incubated with subphase vesicles before addition to the air bubble containing sample chamber. Comparison of spread films with adsorbed films indicated that refinement induced by SP-B occurs by selective removal of non-DPPC lipids upon cycling. SP-A, combined with SP-B, induces a selective adsorption of DPPC from subphase vesicles into the surface film. This is achieved by formation of large lipid structures which might resemble tubular myelin.
Full Text
The Full Text of this article is available as a PDF (74.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernhard W., Haagsman H. P., Tschernig T., Poets C. F., Postle A. D., van Eijk M. E., von der Hardt H. Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. Am J Respir Cell Mol Biol. 1997 Jul;17(1):41–50. doi: 10.1165/ajrcmb.17.1.2594. [DOI] [PubMed] [Google Scholar]
- Brouwers J. F., Gadella B. M., van Golde L. M., Tielens A. G. Quantitative analysis of phosphatidylcholine molecular species using HPLC and light scattering detection. J Lipid Res. 1998 Feb;39(2):344–353. [PubMed] [Google Scholar]
- Cochrane C. G., Revak S. D., Merritt T. A., Heldt G. P., Hallman M., Cunningham M. D., Easa D., Pramanik A., Edwards D. K., Alberts M. S. The efficacy and safety of KL4-surfactant in preterm infants with respiratory distress syndrome. Am J Respir Crit Care Med. 1996 Jan;153(1):404–410. doi: 10.1164/ajrccm.153.1.8542150. [DOI] [PubMed] [Google Scholar]
- Cockshutt A. M., Absolom D. R., Possmayer F. The role of palmitic acid in pulmonary surfactant: enhancement of surface activity and prevention of inhibition by blood proteins. Biochim Biophys Acta. 1991 Sep 11;1085(2):248–256. doi: 10.1016/0005-2760(91)90101-m. [DOI] [PubMed] [Google Scholar]
- Cockshutt A. M., Weitz J., Possmayer F. Pulmonary surfactant-associated protein A enhances the surface activity of lipid extract surfactant and reverses inhibition by blood proteins in vitro. Biochemistry. 1990 Sep 11;29(36):8424–8429. doi: 10.1021/bi00488a032. [DOI] [PubMed] [Google Scholar]
- Haagsman H. P., Elfring R. H., van Buel B. L., Voorhout W. F. The lung lectin surfactant protein A aggregates phospholipid vesicles via a novel mechanism. Biochem J. 1991 Apr 1;275(Pt 1):273–276. doi: 10.1042/bj2750273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haagsman H. P., Hawgood S., Sargeant T., Buckley D., White R. T., Drickamer K., Benson B. J. The major lung surfactant protein, SP 28-36, is a calcium-dependent, carbohydrate-binding protein. J Biol Chem. 1987 Oct 15;262(29):13877–13880. [PubMed] [Google Scholar]
- Hall S. B., Venkitaraman A. R., Whitsett J. A., Holm B. A., Notter R. H. Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants. Am Rev Respir Dis. 1992 Jan;145(1):24–30. doi: 10.1164/ajrccm/145.1.24. [DOI] [PubMed] [Google Scholar]
- Hawgood S., Ogawa A., Yukitake K., Schlueter M., Brown C., White T., Buckley D., Lesikar D., Benson B. Lung function in premature rabbits treated with recombinant human surfactant protein-C. Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):484–490. doi: 10.1164/ajrccm.154.2.8756826. [DOI] [PubMed] [Google Scholar]
- Holm B. A., Wang Z., Egan E. A., Notter R. H. Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity. Pediatr Res. 1996 May;39(5):805–811. doi: 10.1203/00006450-199605000-00010. [DOI] [PubMed] [Google Scholar]
- Ingenito E. P., Mark L., Morris J., Espinosa F. F., Kamm R. D., Johnson M. Biophysical characterization and modeling of lung surfactant components. J Appl Physiol (1985) 1999 May;86(5):1702–1714. doi: 10.1152/jappl.1999.86.5.1702. [DOI] [PubMed] [Google Scholar]
- Kahn M. C., Anderson G. J., Anyan W. R., Hall S. B. Phosphatidylcholine molecular species of calf lung surfactant. Am J Physiol. 1995 Nov;269(5 Pt 1):L567–L573. doi: 10.1152/ajplung.1995.269.5.L567. [DOI] [PubMed] [Google Scholar]
- Krill S. L., Gupta S. L. Effect of a bovine lung surfactant protein isolate (SP-B/C) on egg phosphatidylglycerol acyl chain order in a lipid mixture with dipalmitoylphosphatidylcholine and palmitic acid. J Pharm Sci. 1994 Apr;83(4):539–541. doi: 10.1002/jps.2600830418. [DOI] [PubMed] [Google Scholar]
- Kuroki Y., Akino T. Pulmonary surfactant protein A (SP-A) specifically binds dipalmitoylphosphatidylcholine. J Biol Chem. 1991 Feb 15;266(5):3068–3073. [PubMed] [Google Scholar]
- Lema G., Enhorning G. Surface properties after a simulated PLA2 hydrolysis of pulmonary surfactant's main component, DPPC. Biochim Biophys Acta. 1997 Mar 10;1345(1):86–92. doi: 10.1016/s0005-2760(96)00180-4. [DOI] [PubMed] [Google Scholar]
- Nag K., Munro J. G., Inchley K., Schürch S., Petersen N. O., Possmayer F. SP-B refining of pulmonary surfactant phospholipid films. Am J Physiol. 1999 Dec;277(6 Pt 1):L1179–L1189. doi: 10.1152/ajplung.1999.277.6.L1179. [DOI] [PubMed] [Google Scholar]
- Nag K., Taneva S. G., Perez-Gil J., Cruz A., Keough K. M. Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films. Biophys J. 1997 Jun;72(6):2638–2650. doi: 10.1016/S0006-3495(97)78907-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogee L. M., Garnier G., Dietz H. C., Singer L., Murphy A. M., deMello D. E., Colten H. R. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest. 1994 Apr;93(4):1860–1863. doi: 10.1172/JCI117173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
- Palmblad M., Johansson J., Robertson B., Curstedt T. Biophysical activity of an artificial surfactant containing an analogue of surfactant protein (SP)-C and native SP-B. Biochem J. 1999 Apr 15;339(Pt 2):381–386. [PMC free article] [PubMed] [Google Scholar]
- Pastrana-Rios B., Flach C. R., Brauner J. W., Mautone A. J., Mendelsohn R. A direct test of the "squeeze-out" hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface. Biochemistry. 1994 May 3;33(17):5121–5127. doi: 10.1021/bi00183a016. [DOI] [PubMed] [Google Scholar]
- Putz G., Goerke J., Schürch S., Clements J. A. Evaluation of pressure-driven captive bubble surfactometer. J Appl Physiol (1985) 1994 Apr;76(4):1417–1424. doi: 10.1152/jappl.1994.76.4.1417. [DOI] [PubMed] [Google Scholar]
- Putz G., Walch M., Van Eijk M., Haagsman H. P. A spreading technique for forming film in a captive bubble. Biophys J. 1998 Nov;75(5):2229–2239. doi: 10.1016/S0006-3495(98)77667-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putz G., Walch M., Van Eijk M., Haagsman H. P. Hydrophobic lung surfactant proteins B and C remain associated with surface film during dynamic cyclic area changes. Biochim Biophys Acta. 1999 Jan 6;1453(1):126–134. doi: 10.1016/s0925-4439(98)00092-1. [DOI] [PubMed] [Google Scholar]
- Pérez-Gil J., Tucker J., Simatos G., Keough K. M. Interfacial adsorption of simple lipid mixtures combined with hydrophobic surfactant protein from pig lung. Biochem Cell Biol. 1992 May;70(5):332–338. doi: 10.1139/o92-051. [DOI] [PubMed] [Google Scholar]
- Qanbar R., Cheng S., Possmayer F., Schürch S. Role of the palmitoylation of surfactant-associated protein C in surfactant film formation and stability. Am J Physiol. 1996 Oct;271(4 Pt 1):L572–L580. doi: 10.1152/ajplung.1996.271.4.L572. [DOI] [PubMed] [Google Scholar]
- Revak S. D., Merritt T. A., Cochrane C. G., Heldt G. P., Alberts M. S., Anderson D. W., Kheiter A. Efficacy of synthetic peptide-containing surfactant in the treatment of respiratory distress syndrome in preterm infant rhesus monkeys. Pediatr Res. 1996 Apr;39(4 Pt 1):715–724. doi: 10.1203/00006450-199604000-00025. [DOI] [PubMed] [Google Scholar]
- Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
- Ruano M. L., Nag K., Worthman L. A., Casals C., Pérez-Gil J., Keough K. M. Differential partitioning of pulmonary surfactant protein SP-A into regions of monolayers of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine/dipalmitoylphosphatidylglycerol. Biophys J. 1998 Mar;74(3):1101–1109. doi: 10.1016/s0006-3495(98)77828-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Schürch S., Green F. H., Bachofen H. Formation and structure of surface films: captive bubble surfactometry. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):180–202. doi: 10.1016/s0925-4439(98)00067-2. [DOI] [PubMed] [Google Scholar]
- Schürch S., Possmayer F., Cheng S., Cockshutt A. M. Pulmonary SP-A enhances adsorption and appears to induce surface sorting of lipid extract surfactant. Am J Physiol. 1992 Aug;263(2 Pt 1):L210–L218. doi: 10.1152/ajplung.1992.263.2.L210. [DOI] [PubMed] [Google Scholar]
- Schürch S., Schürch D., Curstedt T., Robertson B. Surface activity of lipid extract surfactant in relation to film area compression and collapse. J Appl Physiol (1985) 1994 Aug;77(2):974–986. doi: 10.1152/jappl.1994.77.2.974. [DOI] [PubMed] [Google Scholar]
- Schürch S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol. 1982 Jun;48(3):339–355. doi: 10.1016/0034-5687(82)90038-x. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Fujita Y., Kogishi K. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am Rev Respir Dis. 1989 Jul;140(1):75–81. doi: 10.1164/ajrccm/140.1.75. [DOI] [PubMed] [Google Scholar]
- Taneva S., Keough K. M. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface. Biochemistry. 1997 Jan 28;36(4):912–922. doi: 10.1021/bi9623542. [DOI] [PubMed] [Google Scholar]
- Tokieda K., Whitsett J. A., Clark J. C., Weaver T. E., Ikeda K., McConnell K. B., Jobe A. H., Ikegami M., Iwamoto H. S. Pulmonary dysfunction in neonatal SP-B-deficient mice. Am J Physiol. 1997 Oct;273(4 Pt 1):L875–L882. doi: 10.1152/ajplung.1997.273.4.L875. [DOI] [PubMed] [Google Scholar]
- Tredano M., van Elburg R. M., Kaspers A. G., Zimmermann L. J., Houdayer C., Aymard P., Hull W. M., Whitsett J. A., Elion J., Griese M. Compound SFTPB 1549C-->GAA (121ins2) and 457delC heterozygosity in severe congenital lung disease and surfactant protein B (SP-B) deficiency. Hum Mutat. 1999;14(6):502–509. doi: 10.1002/(SICI)1098-1004(199912)14:6<502::AID-HUMU9>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Veldhuizen E. J., Batenburg J. J., Vandenbussche G., Putz G., van Golde L. M., Haagsman H. P. Production of surfactant protein C in the baculovirus expression system: the information required for correct folding and palmitoylation of SP-C is contained within the mature sequence. Biochim Biophys Acta. 1999 Jan 12;1416(1-2):295–308. doi: 10.1016/s0005-2736(98)00230-2. [DOI] [PubMed] [Google Scholar]
- Veldhuizen E. J., Waring A. J., Walther F. J., Batenburg J. J., van Golde L. M., Haagsman H. P. Dimeric N-terminal segment of human surfactant protein B (dSP-B(1-25)) has enhanced surface properties compared to monomeric SP-B(1-25). Biophys J. 2000 Jul;79(1):377–384. doi: 10.1016/S0006-3495(00)76299-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venkitaraman A. R., Baatz J. E., Whitsett J. A., Hall S. B., Notter R. H. Biophysical inhibition of synthetic phospholipid-lung surfactant apoprotein admixtures by plasma proteins. Chem Phys Lipids. 1991 Jan-Feb;57(1):49–57. doi: 10.1016/0009-3084(91)90048-g. [DOI] [PubMed] [Google Scholar]
- Venkitaraman A. R., Hall S. B., Whitsett J. A., Notter R. H. Enhancement of biophysical activity of lung surfactant extracts and phospholipid-apoprotein mixtures by surfactant protein A. Chem Phys Lipids. 1990 Dec;56(2-3):185–194. doi: 10.1016/0009-3084(90)90101-v. [DOI] [PubMed] [Google Scholar]
- Wang Z., Gurel O., Baatz J. E., Notter R. H. Acylation of pulmonary surfactant protein-C is required for its optimal surface active interactions with phospholipids. J Biol Chem. 1996 Aug 9;271(32):19104–19109. doi: 10.1074/jbc.271.32.19104. [DOI] [PubMed] [Google Scholar]
- Wang Z., Gurel O., Baatz J. E., Notter R. H. Differential activity and lack of synergy of lung surfactant proteins SP-B and SP-C in interactions with phospholipids. J Lipid Res. 1996 Aug;37(8):1749–1760. [PubMed] [Google Scholar]
- Wang Z., Hall S. B., Notter R. H. Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids. J Lipid Res. 1995 Jun;36(6):1283–1293. [PubMed] [Google Scholar]
- Watkins J. C. The surface properties of pure phospholipids in relation to those of lung extracts. Biochim Biophys Acta. 1968 Mar 4;152(2):293–306. doi: 10.1016/0005-2760(68)90037-4. [DOI] [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Effect of pulmonary surfactant protein A (SP-A) and calcium on the adsorption of cholesterol and film stability. Biochim Biophys Acta. 1994 Mar 24;1211(3):350–358. doi: 10.1016/0005-2760(94)90160-0. [DOI] [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface. J Lipid Res. 1998 Mar;39(3):555–568. [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim Biophys Acta. 1990 Oct 1;1046(3):233–241. doi: 10.1016/0005-2760(90)90236-q. [DOI] [PubMed] [Google Scholar]
- da Costa D. E., Pai M. G., Al Khusaiby S. M. Comparative trial of artificial and natural surfactants in the treatment of respiratory distress syndrome of prematurity: experiences in a developing country. Pediatr Pulmonol. 1999 May;27(5):312–317. doi: 10.1002/(sici)1099-0496(199905)27:5<312::aid-ppul3>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- von Nahmen A., Post A., Galla H. J., Sieber M. The phase behavior of lipid monolayers containing pulmonary surfactant protein C studied by fluorescence light microscopy. Eur Biophys J. 1997;26(5):359–369. doi: 10.1007/s002490050090. [DOI] [PubMed] [Google Scholar]
- von Nahmen A., Schenk M., Sieber M., Amrein M. The structure of a model pulmonary surfactant as revealed by scanning force microscopy. Biophys J. 1997 Jan;72(1):463–469. doi: 10.1016/S0006-3495(97)78687-9. [DOI] [PMC free article] [PubMed] [Google Scholar]