Abstract
In photosystem I trimers of Spirulina platensis a major long wavelength transition is irreversibly bleached by illumination with high-intensity white light. The photobleaching hole, identified by both absorption and circular dichroism spectroscopies, is interpreted as the inhomogeneously broadened Q(y) transition of a chlorophyll form that absorbs maximally near 709 nm at room temperature. Analysis of the mean square deviation of the photobleaching hole between 80 and 300 K, in the linear electron-phonon frame, indicates that the optical reorganization energy is 52 cm(-1), four times greater than that for the bulk, short-wavelength-absorbing chlorophylls, and the inhomogenous site distribution bandwidth is close to 150 cm(-1). The room temperature bandwidth, close to 18.5 nm, is dominated by thermal (homogeneous) broadening. Photobleaching induces correlated circular dichroism changes, of opposite sign, at 709 and 670 nm, which suggests that the long wavelength transition may be a low energy excitonic band, in agreement with its high reorganization energy. Clear identification of the 709-nm spectral form was used in developing a Gaussian description of the long wavelength absorption tail by analyzing the changing band shape during photobleaching using a global decomposition procedure. Additional absorption states near 720, 733, and 743 nm were thus identified. The lowest energy state at 743 nm is present in substoichiometric levels at room temperature and its presence was confirmed by fluorescence spectroscopy. This state displays an unusual increase in intensity upon lowering the temperature, which is successfully described by assuming the presence of low-lying, thermally populated states.
Full Text
The Full Text of this article is available as a PDF (108.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Croce R., Dorra D., Holzwarth A. R., Jennings R. C. Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry. 2000 May 30;39(21):6341–6348. doi: 10.1021/bi992659r. [DOI] [PubMed] [Google Scholar]
- Croce R., Zucchelli G., Garlaschi F. M., Bassi R., Jennings R. C. Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry. 1996 Jul 2;35(26):8572–8579. doi: 10.1021/bi960214m. [DOI] [PubMed] [Google Scholar]
- Croce R., Zucchelli G., Garlaschi F. M., Jennings R. C. A thermal broadening study of the antenna chlorophylls in PSI-200, LHCI, and PSI core. Biochemistry. 1998 Dec 15;37(50):17355–17360. doi: 10.1021/bi9813227. [DOI] [PubMed] [Google Scholar]
- Fischer M. R., Hoff A. J. On the long-wavelength component of the light-harvesting complex of some photosynthetic bacteria. Biophys J. 1992 Oct;63(4):911–916. doi: 10.1016/S0006-3495(92)81689-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giuffra E., Zucchelli G., Sandonà D., Croce R., Cugini D., Garlaschi F. M., Bassi R., Jennings R. C. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms. Biochemistry. 1997 Oct 21;36(42):12984–12993. doi: 10.1021/bi9711339. [DOI] [PubMed] [Google Scholar]
- Hastings G., Kleinherenbrink F. A., Lin S., Blankenship R. E. Time-resolved fluorescence and absorption spectroscopy of photosystem I. Biochemistry. 1994 Mar 22;33(11):3185–3192. doi: 10.1021/bi00177a007. [DOI] [PubMed] [Google Scholar]
- Holzwarth A. R., Schatz G., Brock H., Bittersmann E. Energy transfer and charge separation kinetics in photosystem I: Part 1: Picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J. 1993 Jun;64(6):1813–1826. doi: 10.1016/S0006-3495(93)81552-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Karapetyan N. V., Dorra D., Schweitzer G., Bezsmertnaya I. N., Holzwarth A. R. Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry. 1997 Nov 11;36(45):13830–13837. doi: 10.1021/bi970386z. [DOI] [PubMed] [Google Scholar]
- Karapetyan N. V., Holzwarth A. R., Rögner M. The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett. 1999 Nov 5;460(3):395–400. doi: 10.1016/s0014-5793(99)01352-6. [DOI] [PubMed] [Google Scholar]
- Koehne B., Elli G., Jennings R. C., Wilhelm C., Trissl H. Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim Biophys Acta. 1999 Jun 30;1412(2):94–107. doi: 10.1016/s0005-2728(99)00061-4. [DOI] [PubMed] [Google Scholar]
- Koehne B., Trissl H. W. The cyanobacterium Spirulina platensis contains a long wavelength-absorbing pigment C738 (F76077K) at room temperature. Biochemistry. 1998 Apr 21;37(16):5494–5500. doi: 10.1021/bi9727500. [DOI] [PubMed] [Google Scholar]
- Mullet J. E., Burke J. J., Arntzen C. J. Chlorophyll proteins of photosystem I. Plant Physiol. 1980 May;65(5):814–822. doi: 10.1104/pp.65.5.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ormos P., Ansari A., Braunstein D., Cowen B. R., Frauenfelder H., Hong M. K., Iben I. E., Sauke T. B., Steinbach P. J., Young R. D. Inhomogeneous broadening in spectral bands of carbonmonoxymyoglobin. The connection between spectral and functional heterogeneity. Biophys J. 1990 Feb;57(2):191–199. doi: 10.1016/S0006-3495(90)82522-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pålsson L. O., Flemming C., Gobets B., van Grondelle R., Dekker J. P., Schlodder E. Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J. 1998 May;74(5):2611–2622. doi: 10.1016/S0006-3495(98)77967-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shubin V. V., Bezsmertnaya I. N., Karapetyan N. V. Isolation from Spirulina membranes of two photosystem I-type complexes, one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett. 1992 Sep 14;309(3):340–342. doi: 10.1016/0014-5793(92)80803-o. [DOI] [PubMed] [Google Scholar]
- Shubin V. V., Tsuprun V. L., Bezsmertnaya I. N., Karapetyan N. V. Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. FEBS Lett. 1993 Nov 8;334(1):79–82. doi: 10.1016/0014-5793(93)81685-s. [DOI] [PubMed] [Google Scholar]
- Srajer V., Champion P. M. Investigations of optical line shapes and kinetic hole burning in myoglobin. Biochemistry. 1991 Jul 30;30(30):7390–7402. doi: 10.1021/bi00244a005. [DOI] [PubMed] [Google Scholar]
- Zucchelli G., Garlaschi F. M., Jennings R. C. Thermal broadening analysis of the light harvesting complex II absorption spectrum. Biochemistry. 1996 Dec 17;35(50):16247–16254. doi: 10.1021/bi9613178. [DOI] [PubMed] [Google Scholar]