Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3282–3293. doi: 10.1016/S0006-3495(00)76560-X

Ultrastructural organization of amyloid fibrils by atomic force microscopy.

A K Chamberlain 1, C E MacPhee 1, J Zurdo 1, L A Morozova-Roche 1, H A Hill 1, C M Dobson 1, J J Davis 1
PMCID: PMC1301202  PMID: 11106631

Abstract

Atomic force microscopy has been employed to investigate the structural organization of amyloid fibrils produced in vitro from three very different polypeptide sequences. The systems investigated are a 10-residue peptide derived from the sequence of transthyretin, the 90-residue SH3 domain of bovine phosphatidylinositol-3'-kinase, and human wild-type lysozyme, a 130-residue protein containing four disulfide bridges. The results demonstrate distinct similarities between the structures formed by the different classes of fibrils despite the contrasting nature of the polypeptide species involved. SH3 and lysozyme fibrils consist typically of four protofilaments, exhibiting a left-handed twist along the fibril axis. The substructure of TTR(10-19) fibrils is not resolved by atomic force microscopy and their uniform appearance is suggestive of a regular self-association of very thin filaments. We propose that the exact number and orientation of protofilaments within amyloid fibrils is dictated by packing of the regions of the polypeptide chains that are not directly involved in formation of the cross-beta core of the fibrils. The results obtained for these proteins, none of which is directly associated with any human disease, are closely similar to those of disease-related amyloid fibrils, supporting the concept that amyloid is a generic structure of polypeptide chains. The detailed architecture of an individual fibril, however, depends on the manner in which the protofilaments assemble into the fibrillar structure, which in turn is dependent on the sequence of the polypeptide and the conditions under which the fibril is formed.

Full Text

The Full Text of this article is available as a PDF (560.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer H. H., Aebi U., Häner M., Hermann R., Müller M., Merkle H. P. Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. J Struct Biol. 1995 Jul-Aug;115(1):1–15. doi: 10.1006/jsbi.1995.1024. [DOI] [PubMed] [Google Scholar]
  2. Benzinger T. L., Gregory D. M., Burkoth T. S., Miller-Auer H., Lynn D. G., Botto R. E., Meredith S. C. Propagating structure of Alzheimer's beta-amyloid(10-35) is parallel beta-sheet with residues in exact register. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13407–13412. doi: 10.1073/pnas.95.23.13407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackley H. K., Patel N., Davies M. C., Roberts C. J., Tendler S. J., Wilkinson M. J., Williams P. M. Morphological development of beta(1-40) amyloid fibrils. Exp Neurol. 1999 Aug;158(2):437–443. doi: 10.1006/exnr.1999.7114. [DOI] [PubMed] [Google Scholar]
  4. Blake C. C., Serpell L. C., Sunde M., Sandgren O., Lundgren E. A molecular model of the amyloid fibril. Ciba Found Symp. 1996;199:6-15; discussion 15-21, 40-6. doi: 10.1002/9780470514924.ch2. [DOI] [PubMed] [Google Scholar]
  5. Blake C., Serpell L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous beta-sheet helix. Structure. 1996 Aug 15;4(8):989–998. doi: 10.1016/s0969-2126(96)00104-9. [DOI] [PubMed] [Google Scholar]
  6. Booker G. W., Gout I., Downing A. K., Driscoll P. C., Boyd J., Waterfield M. D., Campbell I. D. Solution structure and ligand-binding site of the SH3 domain of the p85 alpha subunit of phosphatidylinositol 3-kinase. Cell. 1993 May 21;73(4):813–822. doi: 10.1016/0092-8674(93)90259-s. [DOI] [PubMed] [Google Scholar]
  7. Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C. Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature. 1997 Feb 27;385(6619):787–793. doi: 10.1038/385787a0. [DOI] [PubMed] [Google Scholar]
  8. Busciglio J., Lorenzo A., Yankner B. A. Methodological variables in the assessment of beta amyloid neurotoxicity. Neurobiol Aging. 1992 Sep-Oct;13(5):609–612. doi: 10.1016/0197-4580(92)90065-6. [DOI] [PubMed] [Google Scholar]
  9. Canet D., Sunde M., Last A. M., Miranker A., Spencer A., Robinson C. V., Dobson C. M. Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behavior in its disease-related variants. Biochemistry. 1999 May 18;38(20):6419–6427. doi: 10.1021/bi983037t. [DOI] [PubMed] [Google Scholar]
  10. Chaney M. O., Webster S. D., Kuo Y. M., Roher A. E. Molecular modeling of the Abeta1-42 peptide from Alzheimer's disease. Protein Eng. 1998 Sep;11(9):761–767. doi: 10.1093/protein/11.9.761. [DOI] [PubMed] [Google Scholar]
  11. Chiti F., Webster P., Taddei N., Clark A., Stefani M., Ramponi G., Dobson C. M. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3590–3594. doi: 10.1073/pnas.96.7.3590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Conway K. A., Harper J. D., Lansbury P. T. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998 Nov;4(11):1318–1320. doi: 10.1038/3311. [DOI] [PubMed] [Google Scholar]
  13. Dobson C. M. Protein misfolding, evolution and disease. Trends Biochem Sci. 1999 Sep;24(9):329–332. doi: 10.1016/s0968-0004(99)01445-0. [DOI] [PubMed] [Google Scholar]
  14. Engel A., Gaub H. E., Müller D. J. Atomic force microscopy: a forceful way with single molecules. Curr Biol. 1999 Feb 25;9(4):R133–R136. doi: 10.1016/s0960-9822(99)80081-5. [DOI] [PubMed] [Google Scholar]
  15. Fraser P. E., Duffy L. K., O'Malley M. B., Nguyen J., Inouye H., Kirschner D. A. Morphology and antibody recognition of synthetic beta-amyloid peptides. J Neurosci Res. 1991 Apr;28(4):474–485. doi: 10.1002/jnr.490280404. [DOI] [PubMed] [Google Scholar]
  16. Gale M., Pollanen M. S., Markiewicz P., Goh M. C. Sequential assembly of collagen revealed by atomic force microscopy. Biophys J. 1995 May;68(5):2124–2128. doi: 10.1016/S0006-3495(95)80393-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goldsbury C. S., Cooper G. J., Goldie K. N., Müller S. A., Saafi E. L., Gruijters W. T., Misur M. P., Engel A., Aebi U., Kistler J. Polymorphic fibrillar assembly of human amylin. J Struct Biol. 1997 Jun;119(1):17–27. doi: 10.1006/jsbi.1997.3858. [DOI] [PubMed] [Google Scholar]
  18. Goldsbury C., Kistler J., Aebi U., Arvinte T., Cooper G. J. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol. 1999 Jan 8;285(1):33–39. doi: 10.1006/jmbi.1998.2299. [DOI] [PubMed] [Google Scholar]
  19. Guijarro J. I., Morton C. J., Plaxco K. W., Campbell I. D., Dobson C. M. Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy. J Mol Biol. 1998 Feb 27;276(3):657–667. doi: 10.1006/jmbi.1997.1553. [DOI] [PubMed] [Google Scholar]
  20. Guijarro J. I., Sunde M., Jones J. A., Campbell I. D., Dobson C. M. Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4224–4228. doi: 10.1073/pnas.95.8.4224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gustavsson A., Engström U., Westermark P. Normal transthyretin and synthetic transthyretin fragments form amyloid-like fibrils in vitro. Biochem Biophys Res Commun. 1991 Mar 29;175(3):1159–1164. doi: 10.1016/0006-291x(91)91687-8. [DOI] [PubMed] [Google Scholar]
  22. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  23. Harper J. D., Lieber C. M., Lansbury P. T., Jr Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem Biol. 1997 Dec;4(12):951–959. doi: 10.1016/s1074-5521(97)90303-3. [DOI] [PubMed] [Google Scholar]
  24. Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T., Jr Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer's disease. Biochemistry. 1999 Jul 13;38(28):8972–8980. doi: 10.1021/bi9904149. [DOI] [PubMed] [Google Scholar]
  25. Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997 Feb;4(2):119–125. doi: 10.1016/s1074-5521(97)90255-6. [DOI] [PubMed] [Google Scholar]
  26. Heinz W. F., Hoh J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 1999 Apr;17(4):143–150. doi: 10.1016/s0167-7799(99)01304-9. [DOI] [PubMed] [Google Scholar]
  27. Henderson E., Haydon P. G., Sakaguchi D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science. 1992 Sep 25;257(5078):1944–1946. doi: 10.1126/science.1411511. [DOI] [PubMed] [Google Scholar]
  28. Inoue S., Kisilevsky R. A high resolution ultrastructural study of experimental murine AA amyloid. Lab Invest. 1996 Mar;74(3):670–683. [PubMed] [Google Scholar]
  29. Inoue S., Kuroiwa M., Ohashi K., Hara M., Kisilevsky R. Ultrastructural organization of hemodialysis-associated beta 2-microglobulin amyloid fibrils. Kidney Int. 1997 Dec;52(6):1543–1549. doi: 10.1038/ki.1997.484. [DOI] [PubMed] [Google Scholar]
  30. Inoue S., Kuroiwa M., Saraiva M. J., Guimarães A., Kisilevsky R. Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J Struct Biol. 1998 Dec 1;124(1):1–12. doi: 10.1006/jsbi.1998.4052. [DOI] [PubMed] [Google Scholar]
  31. Inoue S., Kuroiwa M., Tan R., Kisilevsky R. A high resolution ultrastructural comparison of isolated and in situ murine AA amyloid fibrils. Amyloid. 1998 Jun;5(2):99–110. doi: 10.3109/13506129808995287. [DOI] [PubMed] [Google Scholar]
  32. Inouye H., Domingues F. S., Damas A. M., Saraiva M. J., Lundgren E., Sandgren O., Kirschner D. A. Analysis of x-ray diffraction patterns from amyloid of biopsied vitreous humor and kidney of transthyretin (TTR) Met30 familial amyloidotic polyneuropathy (FAP) patients: axially arrayed TTR monomers constitute the protofilament. Amyloid. 1998 Sep;5(3):163–174. doi: 10.3109/13506129809003842. [DOI] [PubMed] [Google Scholar]
  33. Inouye H., Kirschner D. A. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices. J Mol Biol. 1997 May 2;268(2):375–389. doi: 10.1006/jmbi.1997.0949. [DOI] [PubMed] [Google Scholar]
  34. Ionescu-Zanetti C., Khurana R., Gillespie J. R., Petrick J. S., Trabachino L. C., Minert L. J., Carter S. A., Fink A. L. Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13175–13179. doi: 10.1073/pnas.96.23.13175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jarvis J. A., Craik D. J., Wilce M. C. X-ray diffraction studies of fibrils formed from peptide fragments of transthyretin. Biochem Biophys Res Commun. 1993 May 14;192(3):991–998. doi: 10.1006/bbrc.1993.1514. [DOI] [PubMed] [Google Scholar]
  36. Jiménez J. L., Guijarro J. I., Orlova E., Zurdo J., Dobson C. M., Sunde M., Saibil H. R. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 1999 Feb 15;18(4):815–821. doi: 10.1093/emboj/18.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kasas S., Gotzos V., Celio M. R. Observation of living cells using the atomic force microscope. Biophys J. 1993 Feb;64(2):539–544. doi: 10.1016/S0006-3495(93)81396-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kayed R., Bernhagen J., Greenfield N., Sweimeh K., Brunner H., Voelter W., Kapurniotu A. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol. 1999 Apr 9;287(4):781–796. doi: 10.1006/jmbi.1999.2646. [DOI] [PubMed] [Google Scholar]
  39. Kelly J. W. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol. 1998 Feb;8(1):101–106. doi: 10.1016/s0959-440x(98)80016-x. [DOI] [PubMed] [Google Scholar]
  40. Kirschner D. A., Elliott-Bryant R., Szumowski K. E., Gonnerman W. A., Kindy M. S., Sipe J. D., Cathcart E. S. In vitro amyloid fibril formation by synthetic peptides corresponding to the amino terminus of apoSAA isoforms from amyloid-susceptible and amyloid-resistant mice. J Struct Biol. 1998 Dec 1;124(1):88–98. doi: 10.1006/jsbi.1998.4047. [DOI] [PubMed] [Google Scholar]
  41. Koo E. H., Lansbury P. T., Jr, Kelly J. W. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9989–9990. doi: 10.1073/pnas.96.18.9989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Kowalewski T., Holtzman D. M. In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3688–3693. doi: 10.1073/pnas.96.7.3688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lansbury P. T., Jr, Costa P. R., Griffiths J. M., Simon E. J., Auger M., Halverson K. J., Kocisko D. A., Hendsch Z. S., Ashburn T. T., Spencer R. G. Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Biol. 1995 Nov;2(11):990–998. doi: 10.1038/nsb1195-990. [DOI] [PubMed] [Google Scholar]
  44. Lansbury P. T., Jr Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3342–3344. doi: 10.1073/pnas.96.7.3342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Li L., Darden T. A., Bartolotti L., Kominos D., Pedersen L. G. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys J. 1999 Jun;76(6):2871–2878. doi: 10.1016/S0006-3495(99)77442-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lin H., Zhu Y. J., Lal R. Amyloid beta protein (1-40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry. 1999 Aug 24;38(34):11189–11196. doi: 10.1021/bi982997c. [DOI] [PubMed] [Google Scholar]
  47. MacPhee C. E., Dobson C. M. Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. J Mol Biol. 2000 Apr 14;297(5):1203–1215. doi: 10.1006/jmbi.2000.3600. [DOI] [PubMed] [Google Scholar]
  48. Malinchik S. B., Inouye H., Szumowski K. E., Kirschner D. A. Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils. Biophys J. 1998 Jan;74(1):537–545. doi: 10.1016/S0006-3495(98)77812-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Maury C. P., Nurmiaho-Lassila E. L., Rossi H. Amyloid fibril formation in gelsolin-derived amyloidosis. Definition of the amyloidogenic region and evidence of accelerated amyloid formation of mutant Asn-187 and Tyr-187 gelsolin peptides. Lab Invest. 1994 Apr;70(4):558–564. [PubMed] [Google Scholar]
  50. Merz P. A., Wisniewski H. M., Somerville R. A., Bobin S. A., Masters C. L., Iqbal K. Ultrastructural morphology of amyloid fibrils from neuritic and amyloid plaques. Acta Neuropathol. 1983;60(1-2):113–124. doi: 10.1007/BF00685355. [DOI] [PubMed] [Google Scholar]
  51. Morozova-Roche L. A., Zurdo J., Spencer A., Noppe W., Receveur V., Archer D. B., Joniau M., Dobson C. M. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J Struct Biol. 2000 Jun;130(2-3):339–351. doi: 10.1006/jsbi.2000.4264. [DOI] [PubMed] [Google Scholar]
  52. Müller D. J., Amrein M., Engel A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol. 1997 Jul;119(2):172–188. doi: 10.1006/jsbi.1997.3875. [DOI] [PubMed] [Google Scholar]
  53. Paige M. F., Rainey J. K., Goh M. C. Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy. Biophys J. 1998 Jun;74(6):3211–3216. doi: 10.1016/S0006-3495(98)78027-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Parbhu A. N., Bryson W. G., Lal R. Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM. Biochemistry. 1999 Sep 7;38(36):11755–11761. doi: 10.1021/bi990746d. [DOI] [PubMed] [Google Scholar]
  55. Pepys M. B., Hawkins P. N., Booth D. R., Vigushin D. M., Tennent G. A., Soutar A. K., Totty N., Nguyen O., Blake C. C., Terry C. J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553–557. doi: 10.1038/362553a0. [DOI] [PubMed] [Google Scholar]
  56. Perutz M. F. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci. 1999 Feb;24(2):58–63. doi: 10.1016/s0968-0004(98)01350-4. [DOI] [PubMed] [Google Scholar]
  57. Pollanen M. S., Markiewicz P., Goh M. C. Paired helical filaments are twisted ribbons composed of two parallel and aligned components: image reconstruction and modeling of filament structure using atomic force microscopy. J Neuropathol Exp Neurol. 1997 Jan;56(1):79–85. doi: 10.1097/00005072-199701000-00008. [DOI] [PubMed] [Google Scholar]
  58. Roher A. E., Chaney M. O., Kuo Y. M., Webster S. D., Stine W. B., Haverkamp L. J., Woods A. S., Cotter R. J., Tuohy J. M., Krafft G. A. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem. 1996 Aug 23;271(34):20631–20635. doi: 10.1074/jbc.271.34.20631. [DOI] [PubMed] [Google Scholar]
  59. Seilheimer B., Bohrmann B., Bondolfi L., Müller F., Stüber D., Döbeli H. The toxicity of the Alzheimer's beta-amyloid peptide correlates with a distinct fiber morphology. J Struct Biol. 1997 Jun;119(1):59–71. doi: 10.1006/jsbi.1997.3859. [DOI] [PubMed] [Google Scholar]
  60. Serpell L. C., Sunde M., Blake C. C. The molecular basis of amyloidosis. Cell Mol Life Sci. 1997 Dec;53(11-12):871–887. doi: 10.1007/s000180050107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Serpell L. C., Sunde M., Fraser P. E., Luther P. K., Morris E. P., Sangren O., Lundgren E., Blake C. C. Examination of the structure of the transthyretin amyloid fibril by image reconstruction from electron micrographs. J Mol Biol. 1995 Nov 24;254(2):113–118. doi: 10.1006/jmbi.1995.0604. [DOI] [PubMed] [Google Scholar]
  62. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  63. Shao Z., Yang J., Somlyo A. P. Biological atomic force microscopy: from microns to nanometers and beyond. Annu Rev Cell Dev Biol. 1995;11:241–265. doi: 10.1146/annurev.cb.11.110195.001325. [DOI] [PubMed] [Google Scholar]
  64. Shao Z., Zhang Y. Biological cryo atomic force microscopy: a brief review. Ultramicroscopy. 1996 Dec;66(3-4):141–152. doi: 10.1016/s0304-3991(96)00087-3. [DOI] [PubMed] [Google Scholar]
  65. Shen C. L., Fitzgerald M. C., Murphy R. M. Effect of acid predissolution on fibril size and fibril flexibility of synthetic beta-amyloid peptide. Biophys J. 1994 Sep;67(3):1238–1246. doi: 10.1016/S0006-3495(94)80593-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Shen C. L., Murphy R. M. Solvent effects on self-assembly of beta-amyloid peptide. Biophys J. 1995 Aug;69(2):640–651. doi: 10.1016/S0006-3495(95)79940-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Soto C., Frangione B. Two conformational states of amyloid beta-peptide: implications for the pathogenesis of Alzheimer's disease. Neurosci Lett. 1995 Feb 17;186(2-3):115–118. doi: 10.1016/0304-3940(95)11299-c. [DOI] [PubMed] [Google Scholar]
  68. Spencer A., Morozov-Roche L. A., Noppe W., MacKenzie D. A., Jeenes D. J., Joniau M., Dobson C. M., Archer D. B. Expression, purification, and characterization of the recombinant calcium-binding equine lysozyme secreted by the filamentous fungus Aspergillus niger: comparisons with the production of hen and human lysozymes. Protein Expr Purif. 1999 Jun;16(1):171–180. doi: 10.1006/prep.1999.1036. [DOI] [PubMed] [Google Scholar]
  69. Sunde M., Serpell L. C., Bartlam M., Fraser P. E., Pepys M. B., Blake C. C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997 Oct 31;273(3):729–739. doi: 10.1006/jmbi.1997.1348. [DOI] [PubMed] [Google Scholar]
  70. Tjernberg L. O., Callaway D. J., Tjernberg A., Hahne S., Lilliehök C., Terenius L., Thyberg J., Nordstedt C. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999 Apr 30;274(18):12619–12625. doi: 10.1074/jbc.274.18.12619. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES