Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3307–3312. doi: 10.1016/S0006-3495(00)76562-3

Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins.

J B Thompson 1, G T Paloczi 1, J H Kindt 1, M Michenfelder 1, B L Smith 1, G Stucky 1, D E Morse 1, P K Hansma 1
PMCID: PMC1301204  PMID: 11106633

Abstract

The mixture of EDTA-soluble proteins found in abalone nacre are known to cause the nucleation and growth of aragonite on calcite seed crystals in supersaturated solutions of calcium carbonate. Past atomic force microscope studies of the interaction of these proteins with calcite crystals did not observe this transition because no information about the crystal polymorph on the surface was obtained. Here we have used the atomic force microscope to directly observe changes in the atomic lattice on a calcite seed crystal after the introduction of abalone shell proteins. The observed changes are consistent with a transition to (001) aragonite growth on a (1014) calcite surface.

Full Text

The Full Text of this article is available as a PDF (416.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman A., Hanson J., Leiserowitz L., Koetzle T. F., Weiner S., Addadi L. Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science. 1993 Feb 5;259(5096):776–779. doi: 10.1126/science.259.5096.776. [DOI] [PubMed] [Google Scholar]
  2. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  3. Gould SA, Burke K, Hansma PK. Simple theory for the atomic-force microscope with a comparison of theoretical and experimental images of graphite. Phys Rev B Condens Matter. 1989 Sep 15;40(8):5363–5366. doi: 10.1103/physrevb.40.5363. [DOI] [PubMed] [Google Scholar]
  4. Heuer A. H., Fink D. J., Laraia V. J., Arias J. L., Calvert P. D., Kendall K., Messing G. L., Blackwell J., Rieke P. C., Thompson D. H. Innovative materials processing strategies: a biomimetic approach. Science. 1992 Feb 28;255(5048):1098–1105. doi: 10.1126/science.1546311. [DOI] [PubMed] [Google Scholar]
  5. Kono M., Hayashi N., Samata T. Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun. 2000 Mar 5;269(1):213–218. doi: 10.1006/bbrc.2000.2274. [DOI] [PubMed] [Google Scholar]
  6. Malkin AJ, Land TA, Kuznetsov YG, McPherson A, DeYoreo JJ. Investigation of virus crystal growth mechanisms by in situ atomic force microscopy. Phys Rev Lett. 1995 Oct 2;75(14):2778–2781. doi: 10.1103/PhysRevLett.75.2778. [DOI] [PubMed] [Google Scholar]
  7. Margolis H. C., Zhang Y. P., Lee C. Y., Kent R. L., Jr, Moreno E. C. Kinetics of enamel demineralization in vitro. J Dent Res. 1999 Jul;78(7):1326–1335. doi: 10.1177/00220345990780070701. [DOI] [PubMed] [Google Scholar]
  8. Ohnesorge F., Binnig G. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science. 1993 Jun 4;260(5113):1451–1456. doi: 10.1126/science.260.5113.1451. [DOI] [PubMed] [Google Scholar]
  9. Samata T., Hayashi N., Kono M., Hasegawa K., Horita C., Akera S. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett. 1999 Nov 26;462(1-2):225–229. doi: 10.1016/s0014-5793(99)01387-3. [DOI] [PubMed] [Google Scholar]
  10. Sarikaya M. An introduction to biomimetics: a structural viewpoint. Microsc Res Tech. 1994 Apr 1;27(5):360–375. doi: 10.1002/jemt.1070270503. [DOI] [PubMed] [Google Scholar]
  11. Simmer J. P., Fukae M., Tanabe T., Yamakoshi Y., Uchida T., Xue J., Margolis H. C., Shimizu M., DeHart B. C., Hu C. C. Purification, characterization, and cloning of enamel matrix serine proteinase 1. J Dent Res. 1998 Feb;77(2):377–386. doi: 10.1177/00220345980770020601. [DOI] [PubMed] [Google Scholar]
  12. Snead M. L. Enamel biology logodaedaly: getting to the root of the problem, or "who's on first...". J Bone Miner Res. 1996 Jul;11(7):899–904. doi: 10.1002/jbmr.5650110705. [DOI] [PubMed] [Google Scholar]
  13. Teng HH, Dove PM, Orme CA, De Yoreo JJ Thermodynamics of calcite growth: baseline for understanding biomineral formation . Science. 1998 Oct 23;282(5389):724–727. doi: 10.1126/science.282.5389.724. [DOI] [PubMed] [Google Scholar]
  14. Walters D. A., Smith B. L., Belcher A. M., Paloczi G. T., Stucky G. D., Morse D. E., Hansma P. K. Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study. Biophys J. 1997 Mar;72(3):1425–1433. doi: 10.1016/S0006-3495(97)78789-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wierzbicki A., Sikes C. S., Madura J. D., Drake B. Atomic force microscopy and molecular modeling of protein and peptide binding to calcite. Calcif Tissue Int. 1994 Feb;54(2):133–141. doi: 10.1007/BF00296064. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES