Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3313–3329. doi: 10.1016/S0006-3495(00)76563-5

Solution conformations of a trimannoside from nuclear magnetic resonance and molecular dynamics simulations.

E W Sayers 1, J H Prestegard 1
PMCID: PMC1301205  PMID: 11106634

Abstract

N-linked oligosaccharides often act as ligands for receptor proteins in a variety of cell recognition processes. Knowledge of the solution conformations, as well as protein-bound conformations, of these oligosaccharides is required to understand these important interactions. In this paper we present a model for the solution conformations sampled by a simple trimannoside, methyl 3, 6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside, which contains two of the most commonly found glycosidic linkages in N-linked oligosaccharides. This model was derived from simulated annealing protocols incorporating distance restraints extracted from NOESY spectra along with torsional restraints computed from three-bond (1)H-(13)C coupling constants measured across the glycosidic bonds. The model was refined in light of unrestrained molecular dynamics simulations conducted in the presence of solvent water. The resulting model depicts a molecule undergoing conformational averaging in solution, adopting four major and two minor conformations. The four major conformations arise from a pair of two-state transitions, one each at the alpha(1-->3) and alpha(1-->6) linkages, whereas the minor conformations result from an additional transition of the alpha(1-->6) linkage. Our data also suggest that the alpha(1-->3) transition is fast and changes the molecular shape slightly, whereas the alpha(1-->6) is much slower and alters the molecular shape dramatically.

Full Text

The Full Text of this article is available as a PDF (239.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt E. R., Stevens E. S. Experimental chiroptical verification of linkage flexibility in methyl 3-O-(alpha-d-mannopyranosyl)-alpha-d-mannopyranoside. Biopolymers. 1996 May;38(5):567–571. doi: 10.1002/(sici)1097-0282(199605)38:5<567::aid-bip2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  2. Balaji P. V., Qasba P. K., Rao V. S. Molecular dynamics simulations of high-mannose oligosaccharides. Glycobiology. 1994 Aug;4(4):497–515. doi: 10.1093/glycob/4.4.497. [DOI] [PubMed] [Google Scholar]
  3. Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804. doi: 10.1146/annurev.iy.11.040193.004003. [DOI] [PubMed] [Google Scholar]
  4. Bolon P. J., Al-Hashimi H. M., Prestegard J. H. Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex. J Mol Biol. 1999 Oct 15;293(1):107–115. doi: 10.1006/jmbi.1999.3133. [DOI] [PubMed] [Google Scholar]
  5. Brisson J. R., Carver J. P. Solution conformation of alpha D(1-3)- and alpha D(1-6)-linked oligomannosides using proton nuclear magnetic resonance. Biochemistry. 1983 Mar 15;22(6):1362–1368. doi: 10.1021/bi00275a007. [DOI] [PubMed] [Google Scholar]
  6. Brisson J. R., Carver J. P. Solution conformation of asparagine-linked oligosaccharides: alpha(1-2)-, alpha(1-3)-, beta(1-2)-, and beta(1-4)-linked units. Biochemistry. 1983 Jul 19;22(15):3671–3680. doi: 10.1021/bi00284a021. [DOI] [PubMed] [Google Scholar]
  7. Brisson J. R., Carver J. P. Solution conformation of asparagine-linked oligosaccharides: alpha(1-6)-linked moiety. Biochemistry. 1983 Jul 19;22(15):3680–3686. doi: 10.1021/bi00284a022. [DOI] [PubMed] [Google Scholar]
  8. Cumming D. A., Carver J. P. Reevaluation of rotamer populations for 1,6 linkages: reconciliation with potential energy calculations. Biochemistry. 1987 Oct 20;26(21):6676–6683. doi: 10.1021/bi00395a017. [DOI] [PubMed] [Google Scholar]
  9. Cumming D. A., Carver J. P. Virtual and solution conformations of oligosaccharides. Biochemistry. 1987 Oct 20;26(21):6664–6676. doi: 10.1021/bi00395a016. [DOI] [PubMed] [Google Scholar]
  10. Cumming D. A., Dime D. S., Grey A. A., Krepinsky J. J., Carver J. P. Specific deuteration of a trimannoside confirms the existence of a disputed interresidue nuclear Overhauser enhancement. J Biol Chem. 1986 Mar 5;261(7):3208–3213. [PubMed] [Google Scholar]
  11. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
  12. Gabius H. J. Animal lectins. Eur J Biochem. 1997 Feb 1;243(3):543–576. doi: 10.1111/j.1432-1033.1997.t01-1-00543.x. [DOI] [PubMed] [Google Scholar]
  13. Homans S. W. A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. Biochemistry. 1990 Oct 2;29(39):9110–9118. doi: 10.1021/bi00491a003. [DOI] [PubMed] [Google Scholar]
  14. Homans S. W., Dwek R. A., Boyd J., Mahmoudian M., Richards W. G., Rademacher T. W. Conformational transitions in N-linked oligosaccharides. Biochemistry. 1986 Oct 7;25(20):6342–6350. doi: 10.1021/bi00368a076. [DOI] [PubMed] [Google Scholar]
  15. Homans S. W., Dwek R. A., Fernandes D. L., Rademacher T. W. Solution conformation of the biantennary N-linked oligosaccharide of human serotransferrin using 1H NMR nuclear Overhauser effect measurements. FEBS Lett. 1982 Dec 27;150(2):503–506. doi: 10.1016/0014-5793(82)80799-0. [DOI] [PubMed] [Google Scholar]
  16. Homans S. W., Dwek R. A., Rademacher T. W. Tertiary structure in N-linked oligosaccharides. Biochemistry. 1987 Oct 6;26(20):6553–6560. doi: 10.1021/bi00394a040. [DOI] [PubMed] [Google Scholar]
  17. Homans S. W., Pastore A., Dwek R. A., Rademacher T. W. Structure and dynamics in oligomannose-type oligosaccharides. Biochemistry. 1987 Oct 20;26(21):6649–6655. doi: 10.1021/bi00395a014. [DOI] [PubMed] [Google Scholar]
  18. Hricovíni M., Shah R. N., Carver J. P. Detection of internal motions in oligosaccharides by 1H relaxation measurements at different magnetic fields. Biochemistry. 1992 Oct 20;31(41):10018–10023. doi: 10.1021/bi00156a022. [DOI] [PubMed] [Google Scholar]
  19. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Symbols for specifying the conformation of polysaccharide chains. Recommendations 1981. Eur J Biochem. 1983 Mar 1;131(1):5–7. doi: 10.1111/j.1432-1033.1983.tb07224.x. [DOI] [PubMed] [Google Scholar]
  20. Lasky L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992 Nov 6;258(5084):964–969. doi: 10.1126/science.1439808. [DOI] [PubMed] [Google Scholar]
  21. Mäler L., Widmalm G., Kowalewski J. Motional properties of a pentasaccharide containing a 2,6-branched mannose residue as studied by 13C nuclear spin relaxation. J Biomol NMR. 1996 Jan;7(1):1–7. doi: 10.1007/BF00190452. [DOI] [PubMed] [Google Scholar]
  22. Opdenakker G., Rudd P. M., Ponting C. P., Dwek R. A. Concepts and principles of glycobiology. FASEB J. 1993 Nov;7(14):1330–1337. doi: 10.1096/fasebj.7.14.8224606. [DOI] [PubMed] [Google Scholar]
  23. Oswood M. C., Kim Y., Ohlrogge J. B., Prestegard J. H. Structural homology of spinach acyl carrier protein and Escherichia coli acyl carrier protein based on NMR data. Proteins. 1997 Jan;27(1):131–143. [PubMed] [Google Scholar]
  24. Otter A., Lemieux R. U., Ball R. G., Venot A. P., Hindsgaul O., Bundle D. R. Crystal state and solution conformation of the B blood group trisaccharide alpha-L-Fucp-(1-->2)-[alpha-D-Galp]-(1-->3)]-beta-D-Galp-OCH3. Eur J Biochem. 1999 Jan;259(1-2):295–303. [PubMed] [Google Scholar]
  25. Rance M., Sørensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wüthrich K. Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun. 1983 Dec 16;117(2):479–485. doi: 10.1016/0006-291x(83)91225-1. [DOI] [PubMed] [Google Scholar]
  26. Renouf D. V., Hounsell E. F. Molecular modelling of glycoproteins by homology with non-glycosylated protein domains, computer simulated glycosylation and molecular dynamics. Adv Exp Med Biol. 1995;376:37–45. doi: 10.1007/978-1-4615-1885-3_4. [DOI] [PubMed] [Google Scholar]
  27. Rutherford T. J., Homans S. W. Restrained vs free dynamics simulations of oligosaccharides: application to solution dynamics of biantennary and bisected biantennary N-linked glycans. Biochemistry. 1994 Aug 16;33(32):9606–9614. doi: 10.1021/bi00198a029. [DOI] [PubMed] [Google Scholar]
  28. Rutherford T. J., Partridge J., Weller C. T., Homans S. W. Characterization of the extent of internal motions in oligosaccharides. Biochemistry. 1993 Nov 30;32(47):12715–12724. doi: 10.1021/bi00210a021. [DOI] [PubMed] [Google Scholar]
  29. Spronk B. A., Rivera-Sagredo A., Kamerling J. P., Vliegenthart J. F. A reinvestigation towards the conformation of methyl alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside by a combined ROE and molecular dynamics analysis. Carbohydr Res. 1995 Aug 22;273(1):11–26. doi: 10.1016/0008-6215(95)00061-w. [DOI] [PubMed] [Google Scholar]
  30. Taguchi T., Kitajima K., Muto Y., Yokoyama S., Inoue S., Inoue Y. Proton NMR study of the trimannosyl unit in a pentaantennary N-linked decasaccharide structure. Complete assignment of the proton resonances and conformational characterization. Eur J Biochem. 1995 Mar 15;228(3):822–829. doi: 10.1111/j.1432-1033.1995.tb20328.x. [DOI] [PubMed] [Google Scholar]
  31. Weis W. I., Crichlow G. V., Murthy H. M., Hendrickson W. A., Drickamer K. Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. J Biol Chem. 1991 Nov 5;266(31):20678–20686. [PubMed] [Google Scholar]
  32. Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
  33. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  34. Woods R. J., Pathiaseril A., Wormald M. R., Edge C. J., Dwek R. A. The high degree of internal flexibility observed for an oligomannose oligosaccharide does not alter the overall topology of the molecule. Eur J Biochem. 1998 Dec 1;258(2):372–386. doi: 10.1046/j.1432-1327.1998.2580372.x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES