Abstract
The amyloid Abeta(10-35)-NH2 peptide is simulated in an aqueous environment on the nanosecond time scale. One focus of the study is on the validation of the computational model through a direct comparison of simulated statistical averages with experimental observations of the peptide's structure and dynamics. These measures include (1) nuclear magnetic resonance spectroscopy-derived amide bond order parameters and temperature-dependent H(alpha) proton chemical shifts, (2) the peptide's radius of gyration and end-to-end distance, (3) the rates of peptide self-diffusion in water, and (4) the peptide's hydrodynamic radius as measured by quasielastic light scattering experiments. A second focus of the study is the identification of key intrapeptide interactions that stabilize the central structural motif of the peptide. Particular attention is paid to the structure and fluctuation of the central LVFFA hydrophobic cluster (17-21) region and the VGSN turn (24-27) region. There is a strong correlation between preservation of the structure of these elements and interactions between the cluster and turn regions in imposing structure on the peptide monomer. The specific role of these interactions in relation to proposed mechanisms of amyloidosis is discussed.
Full Text
The Full Text of this article is available as a PDF (475.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrow C. J., Yasuda A., Kenny P. T., Zagorski M. G. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. J Mol Biol. 1992 Jun 20;225(4):1075–1093. doi: 10.1016/0022-2836(92)90106-t. [DOI] [PubMed] [Google Scholar]
- Esler W. P., Felix A. M., Stimson E. R., Lachenmann M. J., Ghilardi J. R., Lu Y. A., Vinters H. V., Mantyh P. W., Lee J. P., Maggio J. E. Activation barriers to structural transition determine deposition rates of Alzheimer's disease a beta amyloid. J Struct Biol. 2000 Jun;130(2-3):174–183. doi: 10.1006/jsbi.2000.4276. [DOI] [PubMed] [Google Scholar]
- Esler W. P., Stimson E. R., Ghilardi J. R., Lu Y. A., Felix A. M., Vinters H. V., Mantyh P. W., Lee J. P., Maggio J. E. Point substitution in the central hydrophobic cluster of a human beta-amyloid congener disrupts peptide folding and abolishes plaque competence. Biochemistry. 1996 Nov 5;35(44):13914–13921. doi: 10.1021/bi961302+. [DOI] [PubMed] [Google Scholar]
- Esler W. P., Stimson E. R., Ghilardi J. R., Vinters H. V., Lee J. P., Mantyh P. W., Maggio J. E. In vitro growth of Alzheimer's disease beta-amyloid plaques displays first-order kinetics. Biochemistry. 1996 Jan 23;35(3):749–757. doi: 10.1021/bi951685w. [DOI] [PubMed] [Google Scholar]
- Harper J. D., Lieber C. M., Lansbury P. T., Jr Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem Biol. 1997 Dec;4(12):951–959. doi: 10.1016/s1074-5521(97)90303-3. [DOI] [PubMed] [Google Scholar]
- Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997 Feb;4(2):119–125. doi: 10.1016/s1074-5521(97)90255-6. [DOI] [PubMed] [Google Scholar]
- Kusumoto Y., Lomakin A., Teplow D. B., Benedek G. B. Temperature dependence of amyloid beta-protein fibrillization. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12277–12282. doi: 10.1073/pnas.95.21.12277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Lee J. P., Stimson E. R., Ghilardi J. R., Mantyh P. W., Lu Y. A., Felix A. M., Llanos W., Behbin A., Cummings M., Van Criekinge M. 1H NMR of A beta amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry. 1995 Apr 18;34(15):5191–5200. doi: 10.1021/bi00015a033. [DOI] [PubMed] [Google Scholar]
- Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1125–1129. doi: 10.1073/pnas.93.3.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lomakin A., Teplow D. B., Kirschner D. A., Benedek G. B. Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7942–7947. doi: 10.1073/pnas.94.15.7942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maggio J. E., Mantyh P. W. Brain amyloid--a physicochemical perspective. Brain Pathol. 1996 Apr;6(2):147–162. doi: 10.1111/j.1750-3639.1996.tb00797.x. [DOI] [PubMed] [Google Scholar]
- Peng J. W., Wagner G. Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry. 1995 Dec 26;34(51):16733–16752. doi: 10.1021/bi00051a023. [DOI] [PubMed] [Google Scholar]
- Peng J. W., Wagner G. Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry. 1992 Sep 15;31(36):8571–8586. doi: 10.1021/bi00151a027. [DOI] [PubMed] [Google Scholar]
- Rochet J. C., Lansbury P. T., Jr Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol. 2000 Feb;10(1):60–68. doi: 10.1016/s0959-440x(99)00049-4. [DOI] [PubMed] [Google Scholar]
- Selkoe D. J. Alzheimer's disease: a central role for amyloid. J Neuropathol Exp Neurol. 1994 Sep;53(5):438–447. doi: 10.1097/00005072-199409000-00003. [DOI] [PubMed] [Google Scholar]
- Teplow D. B. Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid. 1998 Jun;5(2):121–142. doi: 10.3109/13506129808995290. [DOI] [PubMed] [Google Scholar]
- Tseng B. P., Esler W. P., Clish C. B., Stimson E. R., Ghilardi J. R., Vinters H. V., Mantyh P. W., Lee J. P., Maggio J. E. Deposition of monomeric, not oligomeric, Abeta mediates growth of Alzheimer's disease amyloid plaques in human brain preparations. Biochemistry. 1999 Aug 10;38(32):10424–10431. doi: 10.1021/bi990718v. [DOI] [PubMed] [Google Scholar]
- Walsh D. M., Lomakin A., Benedek G. B., Condron M. M., Teplow D. B. Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem. 1997 Aug 29;272(35):22364–22372. doi: 10.1074/jbc.272.35.22364. [DOI] [PubMed] [Google Scholar]
- Wesson L., Eisenberg D. Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Sci. 1992 Feb;1(2):227–235. doi: 10.1002/pro.5560010204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang S., Casey N., Lee J. P. Residual structure in the Alzheimer's disease peptide: probing the origin of a central hydrophobic cluster. Fold Des. 1998;3(5):413–422. doi: 10.1016/S1359-0278(98)00054-6. [DOI] [PubMed] [Google Scholar]
- Zhang S., Iwata K., Lachenmann M. J., Peng J. W., Li S., Stimson E. R., Lu Y., Felix A. M., Maggio J. E., Lee J. P. The Alzheimer's peptide a beta adopts a collapsed coil structure in water. J Struct Biol. 2000 Jun;130(2-3):130–141. doi: 10.1006/jsbi.2000.4288. [DOI] [PubMed] [Google Scholar]