Abstract
When a semiflexible polymer chain is placed in a poor solvent, or in the presence of condensing agents, a toroidal condensate can result. In typical experiments, these condensates are adsorbed to surfaces. Here we examine the changes that can occur when a toroid is adsorbed. We then examine the behavior of a toroid when stretched and identify two regimes: a weak stretching regime where the toroid deforms from a circle to an ellipse, and a strong stretching regime where a tether is pulled from the toroid. In the weak stretching regime, the force increases linearly with separation whereas in the strong stretching regime, the applied force is a constant. We then look at the case of a toroid compressed in the plane of the toroid. In this case the form of the force law depends on how strongly the toroid wets the surfaces. In general, an inverse square force law is found.
Full Text
The Full Text of this article is available as a PDF (85.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argaman M., Golan R., Thomson N. H., Hansma H. G. Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope. Nucleic Acids Res. 1997 Nov 1;25(21):4379–4384. doi: 10.1093/nar/25.21.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloomfield V. A. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991 Nov;31(13):1471–1481. doi: 10.1002/bip.360311305. [DOI] [PubMed] [Google Scholar]
- Bloomfield V. A. DNA condensation by multivalent cations. Biopolymers. 1997;44(3):269–282. doi: 10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
- Duguid J. G., Li C., Shi M., Logan M. J., Alila H., Rolland A., Tomlinson E., Sparrow J. T., Smith L. C. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Biophys J. 1998 Jun;74(6):2802–2814. doi: 10.1016/S0006-3495(98)77987-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang Y., Hoh J. H. Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucleic Acids Res. 1998 Jan 15;26(2):588–593. doi: 10.1093/nar/26.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang Y., Spisz T. S., Hoh J. H. Ethanol-induced structural transitions of DNA on mica. Nucleic Acids Res. 1999 Apr 15;27(8):1943–1949. doi: 10.1093/nar/27.8.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golan R., Pietrasanta L. I., Hsieh W., Hansma H. G. DNA toroids: stages in condensation. Biochemistry. 1999 Oct 19;38(42):14069–14076. doi: 10.1021/bi990901o. [DOI] [PubMed] [Google Scholar]
- Guthold M., Zhu X., Rivetti C., Yang G., Thomson N. H., Kasas S., Hansma H. G., Smith B., Hansma P. K., Bustamante C. Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys J. 1999 Oct;77(4):2284–2294. doi: 10.1016/S0006-3495(99)77067-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansma H. G., Golan R., Hsieh W., Lollo C. P., Mullen-Ley P., Kwoh D. DNA condensation for gene therapy as monitored by atomic force microscopy. Nucleic Acids Res. 1998 May 15;26(10):2481–2487. doi: 10.1093/nar/26.10.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansma H. G., Laney D. E., Bezanilla M., Sinsheimer R. L., Hansma P. K. Applications for atomic force microscopy of DNA. Biophys J. 1995 May;68(5):1672–1677. doi: 10.1016/S0006-3495(95)80343-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansma H. G., Laney D. E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys J. 1996 Apr;70(4):1933–1939. doi: 10.1016/S0006-3495(96)79757-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansma H. G., Pietrasanta L. Atomic force microscopy and other scanning probe microscopies. Curr Opin Chem Biol. 1998 Oct;2(5):579–584. doi: 10.1016/s1367-5931(98)80086-0. [DOI] [PubMed] [Google Scholar]
- Hansma H. G. Varieties of imaging with scanning probe microscopes. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14678–14680. doi: 10.1073/pnas.96.26.14678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hud N. V., Downing K. H., Balhorn R. A constant radius of curvature model for the organization of DNA in toroidal condensates. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3581–3585. doi: 10.1073/pnas.92.8.3581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall E. Gene therapy's growing pains. Science. 1995 Aug 25;269(5227):1050, 1052-5. doi: 10.1126/science.7652552. [DOI] [PubMed] [Google Scholar]
- Park S. Y., Harries D., Gelbart W. M. Topological defects and the optimum size of DNA condensates. Biophys J. 1998 Aug;75(2):714–720. doi: 10.1016/S0006-3495(98)77561-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perales J. C., Ferkol T., Molas M., Hanson R. W. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur J Biochem. 1994 Dec 1;226(2):255–266. doi: 10.1111/j.1432-1033.1994.tb20049.x. [DOI] [PubMed] [Google Scholar]
- Phillips S. C. Receptor-mediated DNA delivery approaches to human gene therapy. Biologicals. 1995 Mar;23(1):13–16. doi: 10.1016/1045-1056(95)90004-7. [DOI] [PubMed] [Google Scholar]
- Radmacher M., Cleveland J. P., Fritz M., Hansma H. G., Hansma P. K. Mapping interaction forces with the atomic force microscope. Biophys J. 1994 Jun;66(6):2159–2165. doi: 10.1016/S0006-3495(94)81011-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ubbink J., Odijk T. Polymer- and salt-induced toroids of hexagonal DNA. Biophys J. 1995 Jan;68(1):54–61. doi: 10.1016/S0006-3495(95)80158-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshikawa Y., Yoshikawa K., Kanbe T. Daunomycin unfolds compactly packed DNA. Biophys Chem. 1996 Oct 30;61(2-3):93–100. doi: 10.1016/s0301-4622(96)02184-9. [DOI] [PubMed] [Google Scholar]