Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):184–194. doi: 10.1016/S0006-3495(01)76006-7

Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells.

B P Helmke 1, D B Thakker 1, R D Goldman 1, P F Davies 1
PMCID: PMC1301225  PMID: 11159394

Abstract

The distribution of hemodynamic shear stress throughout the arterial tree is transduced by the endothelium into local cellular responses that regulate vasoactivity, vessel wall remodeling, and atherogenesis. Although the exact mechanisms of mechanotransduction remain unknown, the endothelial cytoskeleton has been implicated in transmitting extracellular force to cytoplasmic sites of signal generation via connections to the lumenal, intercellular, and basal surfaces. Direct observation of intermediate filament (IF) displacement in cells expressing green fluorescent protein-vimentin has suggested that cytoskeletal mechanics are rapidly altered by the onset of fluid shear stress. Here, restored images from time-lapse optical sectioning fluorescence microscopy were analyzed as a four-dimensional intensity distribution function that represented IF positions. A displacement index, related to the product moment correlation coefficient as a function of time and subcellular spatial location, demonstrated patterns of IF displacement within endothelial cells in a confluent monolayer. Flow onset induced a significant increase in IF displacement above the nucleus compared with that measured near the coverslip surface, and displacement downstream from the nucleus was larger than in upstream areas. Furthermore, coordinated displacement of IF near the edges of adjacent cells suggested the existence of mechanical continuity between cells. Thus, quantitative analysis of the spatiotemporal patterns of flow-induced IF displacement suggests redistribution of intracellular force in response to alterations in hemodynamic shear stress acting at the lumenal surface.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballestrem C., Wehrle-Haller B., Imhof B. A. Actin dynamics in living mammalian cells. J Cell Sci. 1998 Jun;111(Pt 12):1649–1658. doi: 10.1242/jcs.111.12.1649. [DOI] [PubMed] [Google Scholar]
  2. Barbee K. A., Mundel T., Lal R., Davies P. F. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol. 1995 Apr;268(4 Pt 2):H1765–H1772. doi: 10.1152/ajpheart.1995.268.4.H1765. [DOI] [PubMed] [Google Scholar]
  3. Berk B. C., Corson M. A., Peterson T. E., Tseng H. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow. J Biomech. 1995 Dec;28(12):1439–1450. doi: 10.1016/0021-9290(95)00092-5. [DOI] [PubMed] [Google Scholar]
  4. Blose S. H., Meltzer D. I. Visualization of the 10-NM filament vimentin rings in vascular endothelial cells in situ: close resemblance to vimentin cytoskeletons found in monolayers in vitro. Exp Cell Res. 1981 Oct;135(2):299–309. doi: 10.1016/0014-4827(81)90166-x. [DOI] [PubMed] [Google Scholar]
  5. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  6. Caille N., Tardy Y., Meister J. J. Assessment of strain field in endothelial cells subjected to uniaxial deformation of their substrate. Ann Biomed Eng. 1998 May-Jun;26(3):409–416. doi: 10.1114/1.132. [DOI] [PubMed] [Google Scholar]
  7. Carminati J. L., Stearns T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol. 1997 Aug 11;138(3):629–641. doi: 10.1083/jcb.138.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen K. D., Li Y. S., Kim M., Li S., Yuan S., Chien S., Shyy J. Y. Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem. 1999 Jun 25;274(26):18393–18400. doi: 10.1074/jbc.274.26.18393. [DOI] [PubMed] [Google Scholar]
  9. Chien S., Li S., Shyy Y. J. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension. 1998 Jan;31(1 Pt 2):162–169. doi: 10.1161/01.hyp.31.1.162. [DOI] [PubMed] [Google Scholar]
  10. Choquet D., Felsenfeld D. P., Sheetz M. P. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997 Jan 10;88(1):39–48. doi: 10.1016/s0092-8674(00)81856-5. [DOI] [PubMed] [Google Scholar]
  11. Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies P. F., Robotewskyj A., Griem M. L. Endothelial cell adhesion in real time. Measurements in vitro by tandem scanning confocal image analysis. J Clin Invest. 1993 Jun;91(6):2640–2652. doi: 10.1172/JCI116503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davies P. F., Robotewskyj A., Griem M. L. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J Clin Invest. 1994 May;93(5):2031–2038. doi: 10.1172/JCI117197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Davies P. F., Tripathi S. C. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res. 1993 Feb;72(2):239–245. doi: 10.1161/01.res.72.2.239. [DOI] [PubMed] [Google Scholar]
  15. DePaola N., Davies P. F., Pritchard W. F., Jr, Florez L., Harbeck N., Polacek D. C. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3154–3159. doi: 10.1073/pnas.96.6.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dewey C. F., Jr, Bussolari S. R., Gimbrone M. A., Jr, Davies P. F. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981 Aug;103(3):177–185. doi: 10.1115/1.3138276. [DOI] [PubMed] [Google Scholar]
  17. Dong C., Skalak R., Sung K. L., Schmid-Schönbein G. W., Chien S. Passive deformation analysis of human leukocytes. J Biomech Eng. 1988 Feb;110(1):27–36. doi: 10.1115/1.3108402. [DOI] [PubMed] [Google Scholar]
  18. Doyle T., Botstein D. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3886–3891. doi: 10.1073/pnas.93.9.3886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Eriksson J. E., Opal P., Goldman R. D. Intermediate filament dynamics. Curr Opin Cell Biol. 1992 Feb;4(1):99–104. doi: 10.1016/0955-0674(92)90065-k. [DOI] [PubMed] [Google Scholar]
  20. Galbraith C. G., Skalak R., Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton. 1998;40(4):317–330. doi: 10.1002/(SICI)1097-0169(1998)40:4<317::AID-CM1>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  21. Goldman R. D., Goldman A. E., Green K. J., Jones J. C., Jones S. M., Yang H. Y. Intermediate filament networks: organization and possible functions of a diverse group of cytoskeletal elements. J Cell Sci Suppl. 1986;5:69–97. doi: 10.1242/jcs.1986.supplement_5.5. [DOI] [PubMed] [Google Scholar]
  22. Haga J. H., Beaudoin A. J., White J. G., Strony J. Quantification of the passive mechanical properties of the resting platelet. Ann Biomed Eng. 1998 Mar-Apr;26(2):268–277. doi: 10.1114/1.118. [DOI] [PubMed] [Google Scholar]
  23. Heidemann S. R., Kaech S., Buxbaum R. E., Matus A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J Cell Biol. 1999 Apr 5;145(1):109–122. doi: 10.1083/jcb.145.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Helmke B. P., Goldman R. D., Davies P. F. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res. 2000 Apr 14;86(7):745–752. doi: 10.1161/01.res.86.7.745. [DOI] [PubMed] [Google Scholar]
  25. Hiraoka Y., Sedat J. W., Agard D. A. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys J. 1990 Feb;57(2):325–333. doi: 10.1016/S0006-3495(90)82534-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ho C. L., Martys J. L., Mikhailov A., Gundersen G. G., Liem R. K. Novel features of intermediate filament dynamics revealed by green fluorescent protein chimeras. J Cell Sci. 1998 Jul;111(Pt 13):1767–1778. doi: 10.1242/jcs.111.13.1767. [DOI] [PubMed] [Google Scholar]
  27. Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol. 1991 Oct;3(5):841–848. doi: 10.1016/0955-0674(91)90058-7. [DOI] [PubMed] [Google Scholar]
  28. Ishida T., Peterson T. E., Kovach N. L., Berk B. C. MAP kinase activation by flow in endothelial cells. Role of beta 1 integrins and tyrosine kinases. Circ Res. 1996 Aug;79(2):310–316. doi: 10.1161/01.res.79.2.310. [DOI] [PubMed] [Google Scholar]
  29. Janmey P. A., Euteneuer U., Traub P., Schliwa M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. 1991 Apr;113(1):155–160. doi: 10.1083/jcb.113.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Janmey P. A., Shah J. V., Janssen K. P., Schliwa M. Viscoelasticity of intermediate filament networks. Subcell Biochem. 1998;31:381–397. [PubMed] [Google Scholar]
  31. Kano Y., Katoh K., Masuda M., Fujiwara K. Macromolecular composition of stress fiber-plasma membrane attachment sites in endothelial cells in situ. Circ Res. 1996 Nov;79(5):1000–1006. doi: 10.1161/01.res.79.5.1000. [DOI] [PubMed] [Google Scholar]
  32. Karlon W. J., Hsu P. P., Li S., Chien S., McCulloch A. D., Omens J. H. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann Biomed Eng. 1999 Nov-Dec;27(6):712–720. doi: 10.1114/1.226. [DOI] [PubMed] [Google Scholar]
  33. Kohler M., Aufderheide M., Ramm D. Method for the description of differences in the filamentous structure of the cytoskeleton in cultured cells. Toxicol Lett. 1994 Jun;72(1-3):33–42. doi: 10.1016/0378-4274(94)90007-8. [DOI] [PubMed] [Google Scholar]
  34. Levesque M. J., Nerem R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng. 1985 Nov;107(4):341–347. doi: 10.1115/1.3138567. [DOI] [PubMed] [Google Scholar]
  35. Malek A. M., Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci. 1996 Apr;109(Pt 4):713–726. doi: 10.1242/jcs.109.4.713. [DOI] [PubMed] [Google Scholar]
  36. Needham D., Hochmuth R. M. Rapid flow of passive neutrophils into a 4 microns pipet and measurement of cytoplasmic viscosity. J Biomech Eng. 1990 Aug;112(3):269–276. doi: 10.1115/1.2891184. [DOI] [PubMed] [Google Scholar]
  37. Nerem R. M., Levesque M. J., Cornhill J. F. Vascular endothelial morphology as an indicator of the pattern of blood flow. J Biomech Eng. 1981 Aug;103(3):172–176. doi: 10.1115/1.3138275. [DOI] [PubMed] [Google Scholar]
  38. Noria S., Cowan D. B., Gotlieb A. I., Langille B. L. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ Res. 1999 Sep 17;85(6):504–514. doi: 10.1161/01.res.85.6.504. [DOI] [PubMed] [Google Scholar]
  39. Palmer B. M., Bizios R. Quantitative characterization of vascular endothelial cell morphology and orientation using Fourier transform analysis. J Biomech Eng. 1997 May;119(2):159–165. doi: 10.1115/1.2796075. [DOI] [PubMed] [Google Scholar]
  40. Petroll W. M., Cavanagh H. D., Barry P., Andrews P., Jester J. V. Quantitative analysis of stress fiber orientation during corneal wound contraction. J Cell Sci. 1993 Feb;104(Pt 2):353–363. doi: 10.1242/jcs.104.2.353. [DOI] [PubMed] [Google Scholar]
  41. Resnick N., Yahav H., Khachigian L. M., Collins T., Anderson K. R., Dewey F. C., Gimbrone M. A., Jr Endothelial gene regulation by laminar shear stress. Adv Exp Med Biol. 1997;430:155–164. doi: 10.1007/978-1-4615-5959-7_13. [DOI] [PubMed] [Google Scholar]
  42. Satcher R. L., Jr, Dewey C. F., Jr Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J. 1996 Jul;71(1):109–118. doi: 10.1016/S0006-3495(96)79206-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmid-Schönbein G. W., Sung K. L., Tözeren H., Skalak R., Chien S. Passive mechanical properties of human leukocytes. Biophys J. 1981 Oct;36(1):243–256. doi: 10.1016/S0006-3495(81)84726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schmidt C., Pommerenke H., Dürr F., Nebe B., Rychly J. Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem. 1998 Feb 27;273(9):5081–5085. doi: 10.1074/jbc.273.9.5081. [DOI] [PubMed] [Google Scholar]
  45. Shah J. V., Wang L. Z., Traub P., Janmey P. A. Interaction of vimentin with actin and phospholipids. Biol Bull. 1998 Jun;194(3):402–405. doi: 10.2307/1543125. [DOI] [PubMed] [Google Scholar]
  46. Simon S. I., Schmid-Schönbein G. W. Kinematics of cytoplasmic deformation in neutrophils during active motion. J Biomech Eng. 1990 Aug;112(3):303–310. doi: 10.1115/1.2891188. [DOI] [PubMed] [Google Scholar]
  47. Suciu A., Civelekoglu G., Tardy Y., Meister J. J. Model for the alignment of actin filaments in endothelial cells subjected to fluid shear stress. Bull Math Biol. 1997 Nov;59(6):1029–1046. doi: 10.1007/BF02460100. [DOI] [PubMed] [Google Scholar]
  48. Svitkina T. M., Verkhovsky A. B., Borisy G. G. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. 1996 Nov;135(4):991–1007. doi: 10.1083/jcb.135.4.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Theret D. P., Levesque M. J., Sato M., Nerem R. M., Wheeler L. T. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J Biomech Eng. 1988 Aug;110(3):190–199. doi: 10.1115/1.3108430. [DOI] [PubMed] [Google Scholar]
  50. Westphal M., Jungbluth A., Heidecker M., Mühlbauer B., Heizer C., Schwartz J. M., Marriott G., Gerisch G. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr Biol. 1997 Mar 1;7(3):176–183. doi: 10.1016/s0960-9822(97)70088-5. [DOI] [PubMed] [Google Scholar]
  51. Yan C., Takahashi M., Okuda M., Lee J. D., Berk B. C. Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. J Biol Chem. 1999 Jan 1;274(1):143–150. doi: 10.1074/jbc.274.1.143. [DOI] [PubMed] [Google Scholar]
  52. Yoon M., Moir R. D., Prahlad V., Goldman R. D. Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol. 1998 Oct 5;143(1):147–157. doi: 10.1083/jcb.143.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES