Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):280–293. doi: 10.1016/S0006-3495(01)76013-4

Orientation and effects of mastoparan X on phospholipid bicelles.

J A Whiles 1, R Brasseur 1, K J Glover 1, G Melacini 1, E A Komives 1, R R Vold 1
PMCID: PMC1301232  PMID: 11159401

Abstract

Mastoparan X (MPX: INWKGIAAMAKKLL-NH2) belongs to a family of ionophoric peptides found in wasp venom. Upon binding to the membrane, MPX increases the cell's permeability to cations leading to a disruption in the electrolyte balance and cell lysis. This process is thought to occur either through a membrane-thinning mechanism, where the peptide resides on the membrane surface thereby disrupting lipid packing, or through formation of an oligomeric pore. To address this issue, we have used both high-resolution and solid-state 2H NMR techniques to study the structure and orientation of MPX when associated with bicelles. NOESY and chemical shift analysis showed that in bicelles, MPX formed a well-structured amphipathic alpha-helix. In zwitterionic bicelles, the helical axis was found to rest generally perpendicular to the membrane normal, which could be consistent with the "carpet" mechanism for lytic activity. In anionic bicelles, on the other hand, the helical axis was generally parallel to the membrane normal, which is more consistent with the pore model for lytic activity. In addition, MPX caused significant disruption in lipid packing of the negatively charged phospholipids. Taken together, these results show that MPX associates differently with zwitterionic membranes, where it rests parallel to the surface, compared with negatively charged membranes, where it penetrates longitudinally.

Full Text

The Full Text of this article is available as a PDF (307.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbuzova A., Schwarz G. Pore-forming action of mastoparan peptides on liposomes: a quantitative analysis. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):139–152. doi: 10.1016/s0005-2736(99)00098-x. [DOI] [PubMed] [Google Scholar]
  2. Argiolas A., Pisano J. J. Facilitation of phospholipase A2 activity by mastoparans, a new class of mast cell degranulating peptides from wasp venom. J Biol Chem. 1983 Nov 25;258(22):13697–13702. [PubMed] [Google Scholar]
  3. Banerjee U., Zidovetzki R., Birge R. R., Chan S. I. Interaction of alamethicin with lecithin bilayers: a 31P and 2H NMR study. Biochemistry. 1985 Dec 17;24(26):7621–7627. doi: 10.1021/bi00347a019. [DOI] [PubMed] [Google Scholar]
  4. Bechinger B., Zasloff M., Opella S. J. Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. Biophys J. 1998 Feb;74(2 Pt 1):981–987. doi: 10.1016/S0006-3495(98)74021-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bechinger B., Zasloff M., Opella S. J. Structure and interactions of magainin antibiotic peptides in lipid bilayers: a solid-state nuclear magnetic resonance investigation. Biophys J. 1992 Apr;62(1):12–14. doi: 10.1016/S0006-3495(92)81763-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  7. Brasseur R. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem. 1991 Aug 25;266(24):16120–16127. [PubMed] [Google Scholar]
  8. Brasseur R., Killian J. A., De Kruijff B., Ruysschaert J. M. Conformational analysis of gramicidin-gramicidin interactions at the air/water interface suggests that gramicidin aggregates into tube-like structures similar as found in the gramicidin-induced hexagonal HII phase. Biochim Biophys Acta. 1987 Sep 18;903(1):11–17. doi: 10.1016/0005-2736(87)90150-7. [DOI] [PubMed] [Google Scholar]
  9. Brasseur R., Lins L., Vanloo B., Ruysschaert J. M., Rosseneu M. Molecular modeling of the amphipathic helices of the plasma apolipoproteins. Proteins. 1992 Jul;13(3):246–257. doi: 10.1002/prot.340130307. [DOI] [PubMed] [Google Scholar]
  10. Cruciani R. A., Barker J. L., Durell S. R., Raghunathan G., Guy H. R., Zasloff M., Stanley E. F. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol. 1992 Aug 3;226(4):287–296. doi: 10.1016/0922-4106(92)90045-w. [DOI] [PubMed] [Google Scholar]
  11. Davis J. H. The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta. 1983 Mar 21;737(1):117–171. doi: 10.1016/0304-4157(83)90015-1. [DOI] [PubMed] [Google Scholar]
  12. Dufourc E. J., Smith I. C., Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry. 1986 Oct 21;25(21):6448–6455. doi: 10.1021/bi00369a016. [DOI] [PubMed] [Google Scholar]
  13. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  14. Epand R. M., Shai Y., Segrest J. P., Anantharamaiah G. M. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37(5):319–338. doi: 10.1002/bip.360370504. [DOI] [PubMed] [Google Scholar]
  15. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  16. Fujita K., Kimura S., Imanishi Y. Self-assembly of mastoparan X derivative having fluorescence probe in lipid bilayer membrane. Biochim Biophys Acta. 1994 Oct 12;1195(1):157–163. doi: 10.1016/0005-2736(94)90022-1. [DOI] [PubMed] [Google Scholar]
  17. Hellmann N., Schwarz G. Peptide-liposome association. A critical examination with mastoparan-X. Biochim Biophys Acta. 1998 Mar 2;1369(2):267–277. doi: 10.1016/s0005-2736(97)00230-7. [DOI] [PubMed] [Google Scholar]
  18. Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
  19. Higashijima T., Wakamatsu K., Takemitsu M., Fujino M., Nakajima T., Miyazawa T. Conformational change of mastoparan from wasp venom on binding with phospholipid membrane. FEBS Lett. 1983 Feb 21;152(2):227–230. doi: 10.1016/0014-5793(83)80385-8. [DOI] [PubMed] [Google Scholar]
  20. Howard K. P., Opella S. J. High-resolution solid-state NMR spectra of integral membrane proteins reconstituted into magnetically oriented phospholipid bilayers. J Magn Reson B. 1996 Jul;112(1):91–94. doi: 10.1006/jmrb.1996.0116. [DOI] [PubMed] [Google Scholar]
  21. Jendrasiak G. L., Hasty J. H. The hydration of phospholipids. Biochim Biophys Acta. 1974 Jan 23;337(1):79–91. doi: 10.1016/0005-2760(74)90042-3. [DOI] [PubMed] [Google Scholar]
  22. Jones D. H., Barber K. R., VanDerLoo E. W., Grant C. W. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry. 1998 Nov 24;37(47):16780–16787. doi: 10.1021/bi981520y. [DOI] [PubMed] [Google Scholar]
  23. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kovacs F. A., Cross T. A. Transmembrane four-helix bundle of influenza A M2 protein channel: structural implications from helix tilt and orientation. Biophys J. 1997 Nov;73(5):2511–2517. doi: 10.1016/S0006-3495(97)78279-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kusunoki H., Wakamatsu K., Sato K., Miyazawa T., Kohno T. G protein-bound conformation of mastoparan-X: heteronuclear multidimensional transferred nuclear overhauser effect analysis of peptide uniformly enriched with 13C and 15N. Biochemistry. 1998 Apr 7;37(14):4782–4790. doi: 10.1021/bi972756p. [DOI] [PubMed] [Google Scholar]
  26. Lins L., Brasseur R. The hydrophobic effect in protein folding. FASEB J. 1995 Apr;9(7):535–540. doi: 10.1096/fasebj.9.7.7737462. [DOI] [PubMed] [Google Scholar]
  27. Losonczi J. A., Prestegard J. H. Nuclear magnetic resonance characterization of the myristoylated, N-terminal fragment of ADP-ribosylation factor 1 in a magnetically oriented membrane array. Biochemistry. 1998 Jan 13;37(2):706–716. doi: 10.1021/bi9717791. [DOI] [PubMed] [Google Scholar]
  28. Malencik D. A., Anderson S. R. High affinity binding of the mastoparans by calmodulin. Biochem Biophys Res Commun. 1983 Jul 18;114(1):50–56. doi: 10.1016/0006-291x(83)91592-9. [DOI] [PubMed] [Google Scholar]
  29. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  30. Matsuzaki K., Sugishita K., Ishibe N., Ueha M., Nakata S., Miyajima K., Epand R. M. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998 Aug 25;37(34):11856–11863. doi: 10.1021/bi980539y. [DOI] [PubMed] [Google Scholar]
  31. Matsuzaki K., Yoneyama S., Murase O., Miyajima K. Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry. 1996 Jun 25;35(25):8450–8456. doi: 10.1021/bi960342a. [DOI] [PubMed] [Google Scholar]
  32. Mellor I. R., Sansom M. S. Ion-channel properties of mastoparan, a 14-residue peptide from wasp venom, and of MP3, a 12-residue analogue. Proc R Soc Lond B Biol Sci. 1990 Apr 23;239(1296):383–400. doi: 10.1098/rspb.1990.0022. [DOI] [PubMed] [Google Scholar]
  33. North C. L., Barranger-Mathys M., Cafiso D. S. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys J. 1995 Dec;69(6):2392–2397. doi: 10.1016/S0006-3495(95)80108-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992 Nov;2(6):661–665. doi: 10.1007/BF02192855. [DOI] [PubMed] [Google Scholar]
  35. Prosser R. S., Daleman S. I., Davis J. H. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Biophys J. 1994 May;66(5):1415–1428. doi: 10.1016/S0006-3495(94)80932-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Prosser R. S., Hwang J. S., Vold R. R. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J. 1998 May;74(5):2405–2418. doi: 10.1016/S0006-3495(98)77949-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ram P., Prestegard J. H. Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim Biophys Acta. 1988 May 24;940(2):289–294. doi: 10.1016/0005-2736(88)90203-9. [DOI] [PubMed] [Google Scholar]
  38. Reymond M. T., Huo S., Duggan B., Wright P. E., Dyson H. J. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin. Biochemistry. 1997 Apr 29;36(17):5234–5244. doi: 10.1021/bi970038x. [DOI] [PubMed] [Google Scholar]
  39. Sanders C. R., 2nd, Landis G. C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry. 1995 Mar 28;34(12):4030–4040. doi: 10.1021/bi00012a022. [DOI] [PubMed] [Google Scholar]
  40. Sanders C. R., 2nd, Prestegard J. H. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J. 1990 Aug;58(2):447–460. doi: 10.1016/S0006-3495(90)82390-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sanders C. R., 2nd, Schwonek J. P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry. 1992 Sep 22;31(37):8898–8905. doi: 10.1021/bi00152a029. [DOI] [PubMed] [Google Scholar]
  42. Schwarz G., Blochmann U. Association of the wasp venom peptide mastoparan with electrically neutral lipid vesicles. Salt effects on partitioning and conformational state. FEBS Lett. 1993 Mar 1;318(2):172–176. doi: 10.1016/0014-5793(93)80015-m. [DOI] [PubMed] [Google Scholar]
  43. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  44. Seigneuret M., Lévy D. A high-resolution 1H NMR approach for structure determination of membrane peptides and proteins in non-deuterated detergent: application to mastoparan X solubilized in n-octylglucoside. J Biomol NMR. 1995 Jun;5(4):345–352. doi: 10.1007/BF00182276. [DOI] [PubMed] [Google Scholar]
  45. Struppe J., Komives E. A., Taylor S. S., Vold R. R. 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles. Biochemistry. 1998 Nov 3;37(44):15523–15527. doi: 10.1021/bi981326b. [DOI] [PubMed] [Google Scholar]
  46. Struppe J., Whiles J. A., Vold R. R. Acidic phospholipid bicelles: a versatile model membrane system. Biophys J. 2000 Jan;78(1):281–289. doi: 10.1016/S0006-3495(00)76591-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vold R. R., Prosser R. S., Deese A. J. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR. 1997 Apr;9(3):329–335. doi: 10.1023/a:1018643312309. [DOI] [PubMed] [Google Scholar]
  48. Wakamatsu K., Okada A., Miyazawa T., Ohya M., Higashijima T. Membrane-bound conformation of mastoparan-X, a G-protein-activating peptide. Biochemistry. 1992 Jun 23;31(24):5654–5660. doi: 10.1021/bi00139a032. [DOI] [PubMed] [Google Scholar]
  49. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  50. de Kroon A. I., de Gier J., de Kruijff B. The effect of a membrane potential on the interaction of mastoparan X, a mitochondrial presequence, and several regulatory peptides with phospholipid vesicles. Biochim Biophys Acta. 1991 Sep 30;1068(2):111–124. doi: 10.1016/0005-2736(91)90199-i. [DOI] [PubMed] [Google Scholar]
  51. van Tilborg P. J., Mulder F. A., de Backer M. M., Nair M., van Heerde E. C., Folkers G., van der Saag P. T., Karimi-Nejad Y., Boelens R., Kaptein R. Millisecond to microsecond time scale dynamics of the retinoid X and retinoic acid receptor DNA-binding domains and dimeric complex formation. Biochemistry. 1999 Feb 16;38(7):1951–1956. doi: 10.1021/bi982526q. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES