Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):324–330. doi: 10.1016/S0006-3495(01)76017-1

Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy.

A Le Saux 1, J M Ruysschaert 1, E Goormaghtigh 1
PMCID: PMC1301236  PMID: 11159405

Abstract

Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference.

Full Text

The Full Text of this article is available as a PDF (93.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrondo J. L., Etxabe I., Dornberger U., Goñi F. M. Probing protein conformation by infrared spectroscopy. Biochem Soc Trans. 1994 Aug;22(3):380S–380S. doi: 10.1042/bst022380s. [DOI] [PubMed] [Google Scholar]
  2. Atwater I., Dawson C. M., Ribalet B., Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell. J Physiol. 1979 Mar;288:575–588. [PMC free article] [PubMed] [Google Scholar]
  3. Atwater I., Ribalet B., Rojas E. Cyclic changes in potential and resistance of the beta-cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol. 1978 May;278:117–139. doi: 10.1113/jphysiol.1978.sp012296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bamberg E., Benz R. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electrin field on gramicidin A channel formation. Biochim Biophys Acta. 1976 Mar 19;426(3):570–580. doi: 10.1016/0005-2736(76)90400-4. [DOI] [PubMed] [Google Scholar]
  5. Bechinger B., Ruysschaert J. M., Goormaghtigh E. Membrane helix orientation from linear dichroism of infrared attenuated total reflection spectra. Biophys J. 1999 Jan;76(1 Pt 1):552–563. doi: 10.1016/S0006-3495(99)77223-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bechinger B., Seelig J. Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemistry. 1991 Apr 23;30(16):3923–3929. doi: 10.1021/bi00230a017. [DOI] [PubMed] [Google Scholar]
  7. Chernomordik L. V., Sukharev S. I., Popov S. V., Pastushenko V. F., Sokirko A. V., Abidor I. G., Chizmadzhev Y. A. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim Biophys Acta. 1987 Sep 3;902(3):360–373. doi: 10.1016/0005-2736(87)90204-5. [DOI] [PubMed] [Google Scholar]
  8. Coster H. G. Electromechanical stresses and the effect of pH on membrane structure. Biochim Biophys Acta. 1975 Mar 13;382(2):142–146. doi: 10.1016/0005-2736(75)90172-8. [DOI] [PubMed] [Google Scholar]
  9. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  10. Frey S., Tamm L. K. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys J. 1991 Oct;60(4):922–930. doi: 10.1016/S0006-3495(91)82126-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fringeli U. P., Günthard H. H. Infrared membrane spectroscopy. Mol Biol Biochem Biophys. 1981;31:270–332. doi: 10.1007/978-3-642-81537-9_6. [DOI] [PubMed] [Google Scholar]
  12. Goormaghtigh E., Cabiaux V., Ruysschaert J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. Subcell Biochem. 1994;23:405–450. doi: 10.1007/978-1-4615-1863-1_10. [DOI] [PubMed] [Google Scholar]
  13. Goormaghtigh E., Raussens V., Ruysschaert J. M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta. 1999 Jul 6;1422(2):105–185. doi: 10.1016/s0304-4157(99)00004-0. [DOI] [PubMed] [Google Scholar]
  14. Hanke W., Methfessel C., Wilmsen H. U., Katz E., Jung G., Boheim G. Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. Biochim Biophys Acta. 1983 Jan 5;727(1):108–114. doi: 10.1016/0005-2736(83)90374-7. [DOI] [PubMed] [Google Scholar]
  15. Lechleiter J., Girard S., Peralta E., Clapham D. Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science. 1991 Apr 5;252(5002):123–126. doi: 10.1126/science.2011747. [DOI] [PubMed] [Google Scholar]
  16. Marsh D., Müller M., Schmitt F. J. Orientation of the infrared transition moments for an alpha-helix. Biophys J. 2000 May;78(5):2499–2510. doi: 10.1016/S0006-3495(00)76795-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stulen G. Electric field effects on lipid membrane structure. Biochim Biophys Acta. 1981 Feb 6;640(3):621–627. doi: 10.1016/0005-2736(81)90092-4. [DOI] [PubMed] [Google Scholar]
  18. Sugár I. P. A theory of the electric field-induced phase transition of phospholipid bilayers. Biochim Biophys Acta. 1979 Sep 4;556(1):72–85. doi: 10.1016/0005-2736(79)90420-6. [DOI] [PubMed] [Google Scholar]
  19. Sugár I. P. The effects of external fields on the structure of lipid bilayers. J Physiol (Paris) 1981 May;77(9):1035–1042. [PubMed] [Google Scholar]
  20. Teissie J., Tsong T. Y. Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry. 1981 Mar 17;20(6):1548–1554. doi: 10.1021/bi00509a022. [DOI] [PubMed] [Google Scholar]
  21. Tosteson M. T., Alvarez O., Hubbell W., Bieganski R. M., Attenbach C., Caporales L. H., Levy J. J., Nutt R. F., Rosenblatt M., Tosteson D. C. Primary structure of peptides and ion channels. Role of amino acid side chains in voltage gating of melittin channels. Biophys J. 1990 Dec;58(6):1367–1375. doi: 10.1016/S0006-3495(90)82483-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tosteson M. T., Tosteson D. C. The sting. Melittin forms channels in lipid bilayers. Biophys J. 1981 Oct;36(1):109–116. doi: 10.1016/S0006-3495(81)84719-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tsong T. Y., Astumian R. D. Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields. Annu Rev Physiol. 1988;50:273–290. doi: 10.1146/annurev.ph.50.030188.001421. [DOI] [PubMed] [Google Scholar]
  24. de Jongh H. H., Goormaghtigh E., Killian J. A. Analysis of circular dichroism spectra of oriented protein-lipid complexes: toward a general application. Biochemistry. 1994 Dec 6;33(48):14521–14528. doi: 10.1021/bi00252a019. [DOI] [PubMed] [Google Scholar]
  25. de Jongh H. H., Goormaghtigh E., Ruysschaert J. M. Tertiary stability of native and methionine-80 modified cytochrome c detected by proton-deuterium exchange using on-line Fourier transform infrared spectroscopy. Biochemistry. 1995 Jan 10;34(1):172–179. doi: 10.1021/bi00001a021. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES