Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):331–346. doi: 10.1016/S0006-3495(01)76018-3

Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.

D P Tieleman 1, H J Berendsen 1, M S Sansom 1
PMCID: PMC1301237  PMID: 11159406

Abstract

Understanding the binding and insertion of peptides in lipid bilayers is a prerequisite for understanding phenomena such as antimicrobial activity and membrane-protein folding. We describe molecular dynamics simulations of the antimicrobial peptide alamethicin in lipid/water and octane/water environments, taking into account an external electric field to mimic the membrane potential. At cis-positive potentials, alamethicin does not insert into a phospholipid bilayer in 10 ns of simulation, due to the slow dynamics of the peptide and lipids. However, in octane N-terminal insertion occurs at field strengths from 0.33 V/nm and higher, in simulations of up to 100 ns duration. Insertion of alamethicin occurs in two steps, corresponding to desolvation of the Gln7 side chain, and the backbone of Aib10 and Gly11. The proline induced helix kink angle does not change significantly during insertion. Polyalanine and alamethicin form stable helices both when inserted in octane and at the water/octane interface, where they partition in the same location. In water, both polyalanine and alamethicin partially unfold in multiple simulations. We present a detailed analysis of the insertion of alamethicin into the octane slab and the influence of the external field on the peptide structure. Our findings give new insight into the mechanism of channel formation by alamethicin and the structure and dynamics of membrane-associated helices.

Full Text

The Full Text of this article is available as a PDF (562.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachar M., Becker O. M. Protein-induced membrane disorder: a molecular dynamics study of melittin in a dipalmitoylphosphatidylcholine bilayer. Biophys J. 2000 Mar;78(3):1359–1375. doi: 10.1016/S0006-3495(00)76690-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barranger-Mathys M., Cafiso D. S. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling. Biochemistry. 1996 Jan 16;35(2):498–505. doi: 10.1021/bi951985d. [DOI] [PubMed] [Google Scholar]
  3. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):157–183. doi: 10.1016/s0005-2736(99)00205-9. [DOI] [PubMed] [Google Scholar]
  4. Bechinger B. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides. J Mol Biol. 1996 Nov 15;263(5):768–775. doi: 10.1006/jmbi.1996.0614. [DOI] [PubMed] [Google Scholar]
  5. Ben-Shaul A., Ben-Tal N., Honig B. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys J. 1996 Jul;71(1):130–137. doi: 10.1016/S0006-3495(96)79208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ben-Tal N., Ben-Shaul A., Nicholls A., Honig B. Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophys J. 1996 Apr;70(4):1803–1812. doi: 10.1016/S0006-3495(96)79744-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ben-Tal N., Honig B. Helix-helix interactions in lipid bilayers. Biophys J. 1996 Dec;71(6):3046–3050. doi: 10.1016/S0006-3495(96)79498-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Biggin P. C., Breed J., Son H. S., Sansom M. S. Simulation studies of alamethicin-bilayer interactions. Biophys J. 1997 Feb;72(2 Pt 1):627–636. doi: 10.1016/s0006-3495(97)78701-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cafiso D. S. Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
  12. Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
  13. Chipot C., Maigret B., Pohorille A. Early events in the folding of an amphipathic peptide: A multinanosecond molecular dynamics study. Proteins. 1999 Sep 1;36(4):383–399. [PubMed] [Google Scholar]
  14. Chipot C., Pohorille A. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study. J Am Chem Soc. 1998 Nov 25;120(46):11912–11924. doi: 10.1021/ja980010o. [DOI] [PubMed] [Google Scholar]
  15. Choma C., Gratkowski H., Lear J. D., DeGrado W. F. Asparagine-mediated self-association of a model transmembrane helix. Nat Struct Biol. 2000 Feb;7(2):161–166. doi: 10.1038/72440. [DOI] [PubMed] [Google Scholar]
  16. Daura X., Jaun B., Seebach D., van Gunsteren W. F., Mark A. E. Reversible peptide folding in solution by molecular dynamics simulation. J Mol Biol. 1998 Jul 31;280(5):925–932. doi: 10.1006/jmbi.1998.1885. [DOI] [PubMed] [Google Scholar]
  17. Dempsey C. E., Handcock L. J. Hydrogen bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements. Biophys J. 1996 Apr;70(4):1777–1788. doi: 10.1016/S0006-3495(96)79741-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Duan Y., Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998 Oct 23;282(5389):740–744. doi: 10.1126/science.282.5389.740. [DOI] [PubMed] [Google Scholar]
  19. Epand R. M., Vogel H. J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):11–28. doi: 10.1016/s0005-2736(99)00198-4. [DOI] [PubMed] [Google Scholar]
  20. Esposito G., Carver J. A., Boyd J., Campbell I. D. High-resolution 1H NMR study of the solution structure of alamethicin. Biochemistry. 1987 Feb 24;26(4):1043–1050. doi: 10.1021/bi00378a010. [DOI] [PubMed] [Google Scholar]
  21. Fox R. O., Jr, Richards F. M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
  22. Franklin J. C., Ellena J. F., Jayasinghe S., Kelsh L. P., Cafiso D. S. Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry. 1994 Apr 5;33(13):4036–4045. doi: 10.1021/bi00179a032. [DOI] [PubMed] [Google Scholar]
  23. Gibbs N., Sessions R. B., Williams P. B., Dempsey C. E. Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol. Biophys J. 1997 Jun;72(6):2490–2495. doi: 10.1016/S0006-3495(97)78893-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Goormaghtigh E., Raussens V., Ruysschaert J. M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta. 1999 Jul 6;1422(2):105–185. doi: 10.1016/s0304-4157(99)00004-0. [DOI] [PubMed] [Google Scholar]
  25. Halsall A., Dempsey C. E. Intrinsic helical propensities and stable secondary structure in a membrane-bound fragment (S4) of the shaker potassium channel. J Mol Biol. 1999 Nov 5;293(4):901–915. doi: 10.1006/jmbi.1999.3194. [DOI] [PubMed] [Google Scholar]
  26. He K., Ludtke S. J., Heller W. T., Huang H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys J. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Heller W. T., He K., Ludtke S. J., Harroun T. A., Huang H. W. Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophys J. 1997 Jul;73(1):239–244. doi: 10.1016/S0006-3495(97)78064-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Helluin O., Dugast J. Y., Molle G., Mackie A. R., Ladha S., Duclohier H. Lateral diffusion and conductance properties of a fluorescein-labelled alamethicin in planar lipid bilayers. Biochim Biophys Acta. 1997 Dec 4;1330(2):284–292. doi: 10.1016/s0005-2736(97)00139-9. [DOI] [PubMed] [Google Scholar]
  29. Hol W. G. The role of the alpha-helix dipole in protein function and structure. Prog Biophys Mol Biol. 1985;45(3):149–195. doi: 10.1016/0079-6107(85)90001-x. [DOI] [PubMed] [Google Scholar]
  30. Hristova K., Wimley W. C., Mishra V. K., Anantharamiah G. M., Segrest J. P., White S. H. An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol. 1999 Jul 2;290(1):99–117. doi: 10.1006/jmbi.1999.2840. [DOI] [PubMed] [Google Scholar]
  31. Huang H. W., Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. doi: 10.1016/S0006-3495(91)82144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hünenberger P. H., McCammon J. A. Effect of artificial periodicity in simulations of biomolecules under Ewald boundary conditions: a continuum electrostatics study. Biophys Chem. 1999 Apr 5;78(1-2):69–88. doi: 10.1016/s0301-4622(99)00007-1. [DOI] [PubMed] [Google Scholar]
  33. Jayasinghe S., Barranger-Mathys M., Ellena J. F., Franklin C., Cafiso D. S. Structural features that modulate the transmembrane migration of a hydrophobic peptide in lipid vesicles. Biophys J. 1998 Jun;74(6):3023–3030. doi: 10.1016/S0006-3495(98)78010-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  35. Kessel A., Cafiso D. S., Ben-Tal N. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects. Biophys J. 2000 Feb;78(2):571–583. doi: 10.1016/S0006-3495(00)76617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kovacs F. A., Denny J. K., Song Z., Quine J. R., Cross T. A. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property. J Mol Biol. 2000 Jan 7;295(1):117–125. doi: 10.1006/jmbi.1999.3322. [DOI] [PubMed] [Google Scholar]
  37. Kukol A., Adams P. D., Rice L. M., Brunger A. T., Arkin T. I. Experimentally based orientational refinement of membrane protein models: A structure for the Influenza A M2 H+ channel. J Mol Biol. 1999 Feb 26;286(3):951–962. doi: 10.1006/jmbi.1998.2512. [DOI] [PubMed] [Google Scholar]
  38. La Rocca P., Biggin P. C., Tieleman D. P., Sansom M. S. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochim Biophys Acta. 1999 Dec 15;1462(1-2):185–200. doi: 10.1016/s0005-2736(99)00206-0. [DOI] [PubMed] [Google Scholar]
  39. Ladokhin A. S., White S. H. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol. 1999 Jan 29;285(4):1363–1369. doi: 10.1006/jmbi.1998.2346. [DOI] [PubMed] [Google Scholar]
  40. Lewis J. R., Cafiso D. S. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids. Biochemistry. 1999 May 4;38(18):5932–5938. doi: 10.1021/bi9828167. [DOI] [PubMed] [Google Scholar]
  41. Liu L. P., Deber C. M. Guidelines for membrane protein engineering derived from de novo designed model peptides. Biopolymers. 1998;47(1):41–62. doi: 10.1002/(SICI)1097-0282(1998)47:1<41::AID-BIP6>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  42. Marassi F. M., Opella S. J. NMR structural studies of membrane proteins. Curr Opin Struct Biol. 1998 Oct;8(5):640–648. doi: 10.1016/s0959-440x(98)80157-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Miyazawa A., Fujiyoshi Y., Stowell M., Unwin N. Nicotinic acetylcholine receptor at 4.6 A resolution: transverse tunnels in the channel wall. J Mol Biol. 1999 May 14;288(4):765–786. doi: 10.1006/jmbi.1999.2721. [DOI] [PubMed] [Google Scholar]
  44. North C. L., Barranger-Mathys M., Cafiso D. S. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys J. 1995 Dec;69(6):2392–2397. doi: 10.1016/S0006-3495(95)80108-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roux B. Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J. 1997 Dec;73(6):2980–2989. doi: 10.1016/S0006-3495(97)78327-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sansom M. S. Potassium channels: watching a voltage-sensor tilt and twist. Curr Biol. 2000 Mar 9;10(5):R206–R209. doi: 10.1016/s0960-9822(00)00354-7. [DOI] [PubMed] [Google Scholar]
  47. Sansom M. S. Structure and function of channel-forming peptaibols. Q Rev Biophys. 1993 Nov;26(4):365–421. doi: 10.1017/s0033583500002833. [DOI] [PubMed] [Google Scholar]
  48. Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
  49. Sansom M. S., Tieleman D. P., Berendsen H. J. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations. Novartis Found Symp. 1999;225:128–145. doi: 10.1002/9780470515716.ch9. [DOI] [PubMed] [Google Scholar]
  50. Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tieleman D. P., Berendsen H. J., Sansom M. S. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations. Biophys J. 1999 Jun;76(6):3186–3191. doi: 10.1016/S0006-3495(99)77470-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  53. Tieleman D. P., Sansom M. S., Berendsen H. J. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J. 1999 Jan;76(1 Pt 1):40–49. doi: 10.1016/S0006-3495(99)77176-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vogel H. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry. 1987 Jul 14;26(14):4562–4572. doi: 10.1021/bi00388a060. [DOI] [PubMed] [Google Scholar]
  55. White S. H., Wimley W. C. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta. 1998 Nov 10;1376(3):339–352. doi: 10.1016/s0304-4157(98)00021-5. [DOI] [PubMed] [Google Scholar]
  56. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  57. Wieprecht T., Apostolov O., Beyermann M., Seelig J. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol. 1999 Dec 3;294(3):785–794. doi: 10.1006/jmbi.1999.3268. [DOI] [PubMed] [Google Scholar]
  58. Woolley G. A., Biggin P. C., Schultz A., Lien L., Jaikaran D. C., Breed J., Crowhurst K., Sansom M. S. Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer. Biophys J. 1997 Aug;73(2):770–778. doi: 10.1016/S0006-3495(97)78109-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Woolley G. A., Wallace B. A. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]
  60. Wu Y., He K., Ludtke S. J., Huang H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J. 1995 Jun;68(6):2361–2369. doi: 10.1016/S0006-3495(95)80418-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zhou F. X., Cocco M. J., Russ W. P., Brunger A. T., Engelman D. M. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol. 2000 Feb;7(2):154–160. doi: 10.1038/72430. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES