Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):347–359. doi: 10.1016/S0006-3495(01)76019-5

Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.

M Viard 1, J Gallay 1, M Vincent 1, M Paternostre 1
PMCID: PMC1301238  PMID: 11159407

Abstract

The fluorescent probe laurdan has been shown to be sensitive to the vesicle-to-micelle transition of phosphatidylcholine/octylglucoside (M. Paternostre, O. Meyer, C. Grabielle-Madelmont, S. Lesieur, and, Biophys. J. 69:2476-2488). On the other hand, a study on the photophysics of laurdan in organic solvents has shown that the complex de-excitation pathway of the probe can be described by two successive processes, i.e., an intramolecular charge transfer followed by dielectric relaxation of the solvent if polar. These two excited-state reactions lead to three emitting states, i.e., a locally excited state, a charge transfer state, and a solvent relaxed state (M. Viard, J. Gallay, M. Vincent, B. Robert and, Biophys. J. 73:2221-2234). Experiments have been performed using time-resolved fluorescence on the probe inserted in amphiphile aggregates (mixed liposomes, mixed micelles) different in detergent-to-lipid ratios. The results have been compared with those obtained for laurdan inserted in dipalmitoyl phosphatidylcholine liposomes in the gel and in the fluid lamellar phase. Except for laurdan in dipalmitoyl phosphatidylcholine liposomes in the gel lamellar phase, the red part of the emission spectra originates from the de-excitation of the relaxed excited state of laurdan, indicating that indeed the dielectric relaxation process is an important phenomena in the ground-state return pathway of this probe. On the other hand, the maximization entropy method (MEM) analysis of the fluorescence decay recorded in the blue part of the emission spectra indicates that the dielectric relaxation is not the only reaction occurring to the excited state of laurdan. Moreover, the analysis of the fluorescence decays of laurdan inserted in gel lamellar dipalmitoylphosphatidylcholine (DPPC) liposomes indicates excited-state reactions, although dielectric relaxation is impossible. These results are in agreement with the de-excitation pathway determined from laurdan behavior in organic solvent even if, in most of the aggregates studied in this work, the major phenomenon is the dielectric relaxation of the solvent. All along the vesicle-to-micelle transition, we have observed that the lifetime of the relaxed excited state of laurdan continuously decreases probably due to a dynamic quenching process by water molecules. On the other hand, the time constant of the dielectric relaxation process remains almost unchanged in the lamellar part of the transition but abruptly decreases as soon as the first mixed micelle is formed. This decrease is continuous all over the rest of the transition even if it is more pronounced in the mixed liposomes' and mixed micelles' coexistence. The increase of the octylglucoside-to-lipid ratio of the mixed micelles via the change of the size and the shape of the aggregates may facilitate the penetration and the mobility of water molecules. Therefore, during the vesicle-to-micelle transition, laurdan probes the evolution of both the amphiphile packing in the aggregates and the increase of the interface polarity. This study finally shows that the detergent-to-lipid ratio of the mixed micelles is an important parameter to control to limit the penetration and the mobility of water within the amphiphile aggregates and that laurdan is a nice tool to monitor this phenomenon.

Full Text

The Full Text of this article is available as a PDF (208.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chong P. L., Capes S., Wong P. T. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers: a FT-IR study. Biochemistry. 1989 Oct 17;28(21):8358–8363. doi: 10.1021/bi00447a014. [DOI] [PubMed] [Google Scholar]
  2. Chong P. L. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry. 1988 Jan 12;27(1):399–404. doi: 10.1021/bi00401a060. [DOI] [PubMed] [Google Scholar]
  3. Chong P. L., Wong P. T. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study. Biochim Biophys Acta. 1993 Jul 4;1149(2):260–266. doi: 10.1016/0005-2736(93)90209-i. [DOI] [PubMed] [Google Scholar]
  4. Garavito R. M., Picot D., Loll P. J. Strategies for crystallizing membrane proteins. J Bioenerg Biomembr. 1996 Feb;28(1):13–27. [PubMed] [Google Scholar]
  5. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  6. Lichtenberg D., Robson R. J., Dennis E. A. Solubilization of phospholipids by detergents. Structural and kinetic aspects. Biochim Biophys Acta. 1983 May 24;737(2):285–304. doi: 10.1016/0304-4157(83)90004-7. [DOI] [PubMed] [Google Scholar]
  7. Livesey A. K., Brochon J. C. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J. 1987 Nov;52(5):693–706. doi: 10.1016/S0006-3495(87)83264-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ollivon M., Eidelman O., Blumenthal R., Walter A. Micelle-vesicle transition of egg phosphatidylcholine and octyl glucoside. Biochemistry. 1988 Mar 8;27(5):1695–1703. doi: 10.1021/bi00405a047. [DOI] [PubMed] [Google Scholar]
  10. Parasassi T., Conti F., Gratton E. Fluorophores in a polar medium: time dependence of emission spectra detected by multifrequency phase and modulation fluorometry. Cell Mol Biol. 1986;32(1):99–102. [PubMed] [Google Scholar]
  11. Parasassi T., Conti F., Gratton E. Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol. 1986;32(1):103–108. [PubMed] [Google Scholar]
  12. Parasassi T., De Stasio G., Ravagnan G., Rusch R. M., Gratton E. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J. 1991 Jul;60(1):179–189. doi: 10.1016/S0006-3495(91)82041-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parasassi T., Di Stefano M., Loiero M., Ravagnan G., Gratton E. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Biophys J. 1994 Mar;66(3 Pt 1):763–768. doi: 10.1016/s0006-3495(94)80852-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parasassi T., Di Stefano M., Loiero M., Ravagnan G., Gratton E. Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Biophys J. 1994 Jan;66(1):120–132. doi: 10.1016/S0006-3495(94)80763-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parasassi T., Giusti A. M., Raimondi M., Gratton E. Abrupt modifications of phospholipid bilayer properties at critical cholesterol concentrations. Biophys J. 1995 May;68(5):1895–1902. doi: 10.1016/S0006-3495(95)80367-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paternostre M. T., Roux M., Rigaud J. L. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry. 1988 Apr 19;27(8):2668–2677. doi: 10.1021/bi00408a006. [DOI] [PubMed] [Google Scholar]
  18. Paternostre M., Meyer O., Grabielle-Madelmont C., Lesieur S., Ghanam M., Ollivon M. Partition coefficient of a surfactant between aggregates and solution: application to the micelle-vesicle transition of egg phosphatidylcholine and octyl beta-D-glucopyranoside. Biophys J. 1995 Dec;69(6):2476–2488. doi: 10.1016/S0006-3495(95)80118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rigaud J. L., Paternostre M. T., Bluzat A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry. 1988 Apr 19;27(8):2677–2688. doi: 10.1021/bi00408a007. [DOI] [PubMed] [Google Scholar]
  20. Rigaud J. L., Pitard B., Levy D. Reconstitution of membrane proteins into liposomes: application to energy-transducing membrane proteins. Biochim Biophys Acta. 1995 Oct 10;1231(3):223–246. doi: 10.1016/0005-2728(95)00091-v. [DOI] [PubMed] [Google Scholar]
  21. Rottenberg H. Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan. Biochemistry. 1992 Oct 6;31(39):9473–9481. doi: 10.1021/bi00154a021. [DOI] [PubMed] [Google Scholar]
  22. Schullery S. E., Schmidt C. F., Felgner P., Tillack T. W., Thompson T. E. Fusion of dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1980 Aug 19;19(17):3919–3923. doi: 10.1021/bi00558a005. [DOI] [PubMed] [Google Scholar]
  23. Sun W. J., Tristram-Nagle S., Suter R. M., Nagle J. F. Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence. Biophys J. 1996 Aug;71(2):885–891. doi: 10.1016/S0006-3495(96)79290-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Viard M., Gallay J., Vincent M., Meyer O., Robert B., Paternostre M. Laurdan solvatochromism: solvent dielectric relaxation and intramolecular excited-state reaction. Biophys J. 1997 Oct;73(4):2221–2234. doi: 10.1016/S0006-3495(97)78253-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vinson P. K., Talmon Y., Walter A. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J. 1989 Oct;56(4):669–681. doi: 10.1016/S0006-3495(89)82714-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wahl P. Analysis of fluorescence anisotropy decays by a least square method. Biophys Chem. 1979 Jul;10(1):91–104. doi: 10.1016/0301-4622(79)80009-5. [DOI] [PubMed] [Google Scholar]
  28. Zeng J. W., Chong P. L. Interactions between pressure and ethanol on the formation of interdigitated DPPC liposomes: a study with Prodan fluorescence. Biochemistry. 1991 Oct 1;30(39):9485–9491. doi: 10.1021/bi00103a014. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES