Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):435–442. doi: 10.1016/S0006-3495(01)76026-2

Protein osmotic pressure and the state of water in frog myoplasm.

D W Maughan 1, R E Godt 1
PMCID: PMC1301245  PMID: 11159414

Abstract

We measured the osmotic pressure of diffusible myoplasmic proteins in frog (Rana temporaria) skeletal muscle fibers by using single Sephadex beads as osmometers and dialysis membranes as protein filters. The state of the myoplasmic water was probed by determining the osmotic coefficient of parvalbumin, a small, abundant diffusible protein distributed throughout the fluid myoplasm. Tiny sections of membrane (3.5- and 12-14-kDa cutoffs) were juxtaposed between the Sephadex beads and skinned semitendinosus muscle fibers under oil. After equilibration, the beads were removed and calibrated by comparing the diameter of each bead to its diameter measured in solutions containing 3-12% Dextran T500 (a long-chain polymer). The method was validated using 4% agarose cylinders loaded with bovine serum albumin (BSA) or parvalbumin. The measured osmotic pressures for 1.5 and 3.0 mM BSA were similar to those calculated by others. The mean osmotic pressure produced by the myoplasmic proteins was 9.7 mOsm (4 degrees C). The osmotic pressure attributable to parvalbumin was estimated to be 3.4 mOsm. The osmotic coefficient of the parvalbumin in fibers is approximately 3.7 mOsm mM(-1), i.e., roughly the same as obtained from parvalbumin-loaded agarose cylinders under comparable conditions, suggesting that the fluid interior of muscle resembles a simple salt solution as in a 4% agarose gel.

Full Text

The Full Text of this article is available as a PDF (82.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldoroty R. A., April E. W. Donnan potentials from striated muscle liquid crystals. A-band and I-band measurements. Biophys J. 1984 Dec;46(6):769–779. doi: 10.1016/S0006-3495(84)84075-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arrio-Dupont M., Cribier S., Foucault G., Devaux P. F., d'Albis A. Diffusion of fluorescently labeled macromolecules in cultured muscle cells. Biophys J. 1996 May;70(5):2327–2332. doi: 10.1016/S0006-3495(96)79798-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. R. Structural origins of mammalian albumin. Fed Proc. 1976 Aug;35(10):2141–2144. [PubMed] [Google Scholar]
  4. CALLAGHAN O. H. The purification and properties of rabbit-muscle myokinase. Biochem J. 1957 Dec;67(4):651–657. doi: 10.1042/bj0670651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cameron I. L., Kanal K. M., Keener C. R., Fullerton G. D. A mechanistic view of the non-ideal osmotic and motional behavior of intracellular water. Cell Biol Int. 1997 Feb;21(2):99–113. doi: 10.1006/cbir.1996.0123. [DOI] [PubMed] [Google Scholar]
  6. Clarke F. M., Masters C. J. On the association of glycolytic enzymes with structural proteins of skeletal muscle. Biochim Biophys Acta. 1975 Jan 13;381(1):37–46. doi: 10.1016/0304-4165(75)90187-7. [DOI] [PubMed] [Google Scholar]
  7. Clegg J. S. Intracellular water and the cytomatrix: some methods of study and current views. J Cell Biol. 1984 Jul;99(1 Pt 2):167s–171s. doi: 10.1083/jcb.99.1.167s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edmond E., Farquhar S., Dunstone J. R., Ogston A. G. The osmotic behaviour of Sephadex and its effects on chromatography. Biochem J. 1968 Aug;108(5):755–763. doi: 10.1042/bj1080755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fulton A. B. How crowded is the cytoplasm? Cell. 1982 Sep;30(2):345–347. doi: 10.1016/0092-8674(82)90231-8. [DOI] [PubMed] [Google Scholar]
  10. Godt R. E., Maughan D. W. On the composition of the cytosol of relaxed skeletal muscle of the frog. Am J Physiol. 1988 May;254(5 Pt 1):C591–C604. doi: 10.1152/ajpcell.1988.254.5.C591. [DOI] [PubMed] [Google Scholar]
  11. Gordon A. M., Godt R. E. Some effects of hypertonic solutions on contraction and excitation-contraction coupling in frog skeletal muscles. J Gen Physiol. 1970 Feb;55(2):254–275. doi: 10.1085/jgp.55.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinke J. A. Solvent water for electrolytes in the muscle fiber of the giant barnacle. J Gen Physiol. 1970 Oct;56(4):521–541. doi: 10.1085/jgp.56.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  14. Matsubara I., Goldman Y. E., Simmons R. M. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J Mol Biol. 1984 Feb 15;173(1):15–33. doi: 10.1016/0022-2836(84)90401-7. [DOI] [PubMed] [Google Scholar]
  15. Maughan D. W., Godt R. E. A quantitative analysis of elastic, entropic, electrostatic, and osmotic forces within relaxed skinned muscle fibers. Biophys Struct Mech. 1980;7(1):17–40. doi: 10.1007/BF00538156. [DOI] [PubMed] [Google Scholar]
  16. Maughan D. W., Godt R. E. Equilibrium distribution of ions in a muscle fiber. Biophys J. 1989 Oct;56(4):717–722. doi: 10.1016/S0006-3495(89)82719-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maughan D. W., Godt R. E. Parvalbumin concentration and diffusion coefficient in frog myoplasm. J Muscle Res Cell Motil. 1999 Feb;20(2):199–209. doi: 10.1023/a:1005477002220. [DOI] [PubMed] [Google Scholar]
  18. Maughan D. W., Molloy J. E., Brotto M. A., Godt R. E. Approximating the isometric force-calcium relation of intact frog muscle using skinned fibers. Biophys J. 1995 Oct;69(4):1484–1490. doi: 10.1016/S0006-3495(95)80019-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maughan D., Lord C. Protein diffusivities in skinned frog skeletal muscle fibers. Adv Exp Med Biol. 1988;226:75–84. [PubMed] [Google Scholar]
  20. Maughan D., Recchia C. Diffusible sodium, potassium, magnesium, calcium and phosphorus in frog skeletal muscle. J Physiol. 1985 Nov;368:545–563. doi: 10.1113/jphysiol.1985.sp015875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maughan D., Wegner E. On the organization and diffusion of glycolytic enzymes in skeletal muscle. Prog Clin Biol Res. 1989;315:137–147. [PubMed] [Google Scholar]
  22. Neal B. L., Asthagiri D., Lenhoff A. M. Molecular origins of osmotic second virial coefficients of proteins. Biophys J. 1998 Nov;75(5):2469–2477. doi: 10.1016/S0006-3495(98)77691-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ogawa Y., Tanokura M. Steady-state properties of calcium binding to parvalbumins from bullfrog skeletal muscle: effects of Mg2+, pH, ionic strength, and temperature. J Biochem. 1986 Jan;99(1):73–80. doi: 10.1093/oxfordjournals.jbchem.a135481. [DOI] [PubMed] [Google Scholar]
  24. Ogston A. G., Wells J. D. Osmometry with single sephadex beads. Biochem J. 1970 Aug;119(1):67–73. doi: 10.1042/bj1190067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wiggins P. M. Role of water in some biological processes. Microbiol Rev. 1990 Dec;54(4):432–449. doi: 10.1128/mr.54.4.432-449.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES