Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):455–468. doi: 10.1016/S0006-3495(01)76028-6

Molecular dynamics of DNA quadruplex molecules containing inosine, 6-thioguanine and 6-thiopurine.

R Stefl 1, N Spacková 1, I Berger 1, J Koca 1, J Sponer 1
PMCID: PMC1301247  PMID: 11159416

Abstract

The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses.

Full Text

The Full Text of this article is available as a PDF (309.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Murchie A. I., Norman D. G., Lilley D. M. Solution structure of a parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium ions by nuclear magnetic resonance spectroscopy. J Mol Biol. 1994 Oct 28;243(3):458–471. doi: 10.1006/jmbi.1994.1672. [DOI] [PubMed] [Google Scholar]
  2. Akman S. A., Lingeman R. G., Doroshow J. H., Smith S. S. Quadruplex DNA formation in a region of the tRNA gene supF associated with hydrogen peroxide mediated mutations. Biochemistry. 1991 Sep 3;30(35):8648–8653. doi: 10.1021/bi00099a022. [DOI] [PubMed] [Google Scholar]
  3. Arnott S., Chandrasekaran R., Marttila C. M. Structures for polyinosinic acid and polyguanylic acid. Biochem J. 1974 Aug;141(2):537–543. doi: 10.1042/bj1410537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouaziz S., Kettani A., Patel D. J. A K cation-induced conformational switch within a loop spanning segment of a DNA quadruplex containing G-G-G-C repeats. J Mol Biol. 1998 Sep 25;282(3):637–652. doi: 10.1006/jmbi.1998.2031. [DOI] [PubMed] [Google Scholar]
  5. Cech T. R. G-strings at chromosome ends. Nature. 1988 Apr 28;332(6167):777–778. doi: 10.1038/332777a0. [DOI] [PubMed] [Google Scholar]
  6. Cheatham T. E., 3rd, Cieplak P., Kollman P. A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn. 1999 Feb;16(4):845–862. doi: 10.1080/07391102.1999.10508297. [DOI] [PubMed] [Google Scholar]
  7. Cheatham T. E., 3rd, Srinivasan J., Case D. A., Kollman P. A. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J Biomol Struct Dyn. 1998 Oct;16(2):265–280. doi: 10.1080/07391102.1998.10508245. [DOI] [PubMed] [Google Scholar]
  8. Deng H., Braunlin W. H. Kinetics of sodium ion binding to DNA quadruplexes. J Mol Biol. 1996 Jan 26;255(3):476–483. doi: 10.1006/jmbi.1996.0039. [DOI] [PubMed] [Google Scholar]
  9. Feig M., Pettitt B. M. Sodium and chlorine ions as part of the DNA solvation shell. Biophys J. 1999 Oct;77(4):1769–1781. doi: 10.1016/S0006-3495(99)77023-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feig M., Pettitt B. M. Structural equilibrium of DNA represented with different force fields. Biophys J. 1998 Jul;75(1):134–149. doi: 10.1016/S0006-3495(98)77501-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gee J. E., Revankar G. R., Rao T. S., Hogan M. E. Triplex formation at the rat neu gene utilizing imidazole and 2'-deoxy-6-thioguanosine base substitutions. Biochemistry. 1995 Feb 14;34(6):2042–2048. doi: 10.1021/bi00006a026. [DOI] [PubMed] [Google Scholar]
  12. Han H., Cliff C. L., Hurley L. H. Accelerated assembly of G-quadruplex structures by a small molecule. Biochemistry. 1999 Jun 1;38(22):6981–6986. doi: 10.1021/bi9905922. [DOI] [PubMed] [Google Scholar]
  13. Hardin C. C., Corregan M. J., Lieberman D. V., Brown B. A., 2nd Allosteric interactions between DNA strands and monovalent cations in DNA quadruplex assembly: thermodynamic evidence for three linked association pathways. Biochemistry. 1997 Dec 9;36(49):15428–15450. doi: 10.1021/bi970488p. [DOI] [PubMed] [Google Scholar]
  14. Henderson E., Hardin C. C., Walk S. K., Tinoco I., Jr, Blackburn E. H. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell. 1987 Dec 24;51(6):899–908. doi: 10.1016/0092-8674(87)90577-0. [DOI] [PubMed] [Google Scholar]
  15. Hobza P., Sponer J. Structure, energetics, and dynamics of the nucleic Acid base pairs: nonempirical ab initio calculations. Chem Rev. 1999 Nov 10;99(11):3247–3276. doi: 10.1021/cr9800255. [DOI] [PubMed] [Google Scholar]
  16. Hud N. V., Schultze P., Sklenár V., Feigon J. Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex. J Mol Biol. 1999 Jan 8;285(1):233–243. doi: 10.1006/jmbi.1998.2327. [DOI] [PubMed] [Google Scholar]
  17. Kang C., Zhang X., Ratliff R., Moyzis R., Rich A. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature. 1992 Mar 12;356(6365):126–131. doi: 10.1038/356126a0. [DOI] [PubMed] [Google Scholar]
  18. Kettani A., Bouaziz S., Gorin A., Zhao H., Jones R. A., Patel D. J. Solution structure of a Na cation stabilized DNA quadruplex containing G.G.G.G and G.C.G.C tetrads formed by G-G-G-C repeats observed in adeno-associated viral DNA. J Mol Biol. 1998 Sep 25;282(3):619–636. doi: 10.1006/jmbi.1998.2030. [DOI] [PubMed] [Google Scholar]
  19. Kettani A., Kumar R. A., Patel D. J. Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J Mol Biol. 1995 Dec 8;254(4):638–656. doi: 10.1006/jmbi.1995.0644. [DOI] [PubMed] [Google Scholar]
  20. Klobutcher L. A., Swanton M. T., Donini P., Prescott D. M. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3' terminus. Proc Natl Acad Sci U S A. 1981 May;78(5):3015–3019. doi: 10.1073/pnas.78.5.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Konerding D. E., Cheatham T. E., 3rd, Kollman P. A., James T. L. Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method. J Biomol NMR. 1999 Feb;13(2):119–131. doi: 10.1023/a:1008353423074. [DOI] [PubMed] [Google Scholar]
  22. Langley D. R. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. J Biomol Struct Dyn. 1998 Dec;16(3):487–509. doi: 10.1080/07391102.1998.10508265. [DOI] [PubMed] [Google Scholar]
  23. Laughlan G., Murchie A. I., Norman D. G., Moore M. H., Moody P. C., Lilley D. M., Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science. 1994 Jul 22;265(5171):520–524. doi: 10.1126/science.8036494. [DOI] [PubMed] [Google Scholar]
  24. Lipps H. J., Gruissem W., Prescott D. M. Higher order DNA structure in macronuclear chromatin of the hypotrichous ciliate Oxytricha nova. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2495–2499. doi: 10.1073/pnas.79.8.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Louise-May S., Auffinger P., Westhof E. Calculations of nucleic acid conformations. Curr Opin Struct Biol. 1996 Jun;6(3):289–298. doi: 10.1016/s0959-440x(96)80046-7. [DOI] [PubMed] [Google Scholar]
  26. Marathias V. M., Sawicki M. J., Bolton P. H. 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation. Nucleic Acids Res. 1999 Jul 15;27(14):2860–2867. doi: 10.1093/nar/27.14.2860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mergny J. L., Mailliet P., Lavelle F., Riou J. F., Laoui A., Hélène C. The development of telomerase inhibitors: the G-quartet approach. Anticancer Drug Des. 1999 Aug;14(4):327–339. [PubMed] [Google Scholar]
  28. Mohanty D., Bansal M. Chain folding and A:T pairing in human telomeric DNA: a model-building and molecular dynamics study. Biophys J. 1995 Sep;69(3):1046–1067. doi: 10.1016/S0006-3495(95)79979-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mohanty D., Bansal M. Conformational polymorphism in telomeric structures: loop orientation and interloop pairing in d(G4TnG4). Biopolymers. 1994 Sep;34(9):1187–1211. doi: 10.1002/bip.360340908. [DOI] [PubMed] [Google Scholar]
  30. Moyzis R. K., Buckingham J. M., Cram L. S., Dani M., Deaven L. L., Jones M. D., Meyne J., Ratliff R. L., Wu J. R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6622–6626. doi: 10.1073/pnas.85.18.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Murchie A. I., Lilley D. M. Retinoblastoma susceptibility genes contain 5' sequences with a high propensity to form guanine-tetrad structures. Nucleic Acids Res. 1992 Jan 11;20(1):49–53. doi: 10.1093/nar/20.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oka Y., Thomas C. A., Jr The cohering telomeres of Oxytricha. Nucleic Acids Res. 1987 Nov 11;15(21):8877–8898. doi: 10.1093/nar/15.21.8877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Olivas W. M., Maher L. J., 3rd Overcoming potassium-mediated triplex inhibition. Nucleic Acids Res. 1995 Jun 11;23(11):1936–1941. doi: 10.1093/nar/23.11.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Phillips K., Dauter Z., Murchie A. I., Lilley D. M., Luisi B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution. J Mol Biol. 1997 Oct 17;273(1):171–182. doi: 10.1006/jmbi.1997.1292. [DOI] [PubMed] [Google Scholar]
  35. Rao T. S., Durland R. H., Seth D. M., Myrick M. A., Bodepudi V., Revankar G. R. Incorporation of 2'-deoxy-6-thioguanosine into G-rich oligodeoxyribonucleotides inhibits G-tetrad formation and facilitates triplex formation. Biochemistry. 1995 Jan 24;34(3):765–772. doi: 10.1021/bi00003a009. [DOI] [PubMed] [Google Scholar]
  36. Read M. A., Wood A. A., Harrison J. R., Gowan S. M., Kelland L. R., Dosanjh H. S., Neidle S. Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors: structure-activity relationships. J Med Chem. 1999 Nov 4;42(22):4538–4546. doi: 10.1021/jm990287e. [DOI] [PubMed] [Google Scholar]
  37. Schultze P., Hud N. V., Smith F. W., Feigon J. The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). Nucleic Acids Res. 1999 Aug 1;27(15):3018–3028. doi: 10.1093/nar/27.15.3018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sen D., Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988 Jul 28;334(6180):364–366. doi: 10.1038/334364a0. [DOI] [PubMed] [Google Scholar]
  39. Smith F. W., Feigon J. Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature. 1992 Mar 12;356(6365):164–168. doi: 10.1038/356164a0. [DOI] [PubMed] [Google Scholar]
  40. Smith F. W., Schultze P., Feigon J. Solution structures of unimolecular quadruplexes formed by oligonucleotides containing Oxytricha telomere repeats. Structure. 1995 Oct 15;3(10):997–1008. doi: 10.1016/s0969-2126(01)00236-2. [DOI] [PubMed] [Google Scholar]
  41. Sponer J., Burda J. V., Leszczynksi J., Hobza P. Interactions of hydrated IIa and IIb group metal cations with thioguanine-cytosine DNA base pair: Ab initio and density functional theory investigation of polarization effects, differences among cations, and flexibility of the cation hydration shell. J Biomol Struct Dyn. 1999 Aug;17(1):61–77. doi: 10.1080/07391102.1999.10508341. [DOI] [PubMed] [Google Scholar]
  42. Sprous D., Young M. A., Beveridge D. L. Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): effects of sequence polarity on DNA curvature. J Mol Biol. 1999 Jan 29;285(4):1623–1632. doi: 10.1006/jmbi.1998.2241. [DOI] [PubMed] [Google Scholar]
  43. Strahan G. D., Keniry M. A., Shafer R. H. NMR structure refinement and dynamics of the K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations. Biophys J. 1998 Aug;75(2):968–981. doi: 10.1016/S0006-3495(98)77585-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strahan G. D., Shafer R. H., Keniry M. A. Structural properties of the [d(G3T4G3)]2 quadruplex: evidence for sequential syn-syn deoxyguanosines. Nucleic Acids Res. 1994 Dec 11;22(24):5447–5455. doi: 10.1093/nar/22.24.5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sundquist W. I., Heaphy S. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393–3397. doi: 10.1073/pnas.90.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sundquist W. I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989 Dec 14;342(6251):825–829. doi: 10.1038/342825a0. [DOI] [PubMed] [Google Scholar]
  47. Trantírek L., Stefl R., Vorlícková M., Koca J., Sklenár V., Kypr J. An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J Mol Biol. 2000 Apr 7;297(4):907–922. doi: 10.1006/jmbi.2000.3592. [DOI] [PubMed] [Google Scholar]
  48. Weerasinghe S., Smith P. E., Pettitt B. M. Structure and stability of a model pyrimidine-purine-purine DNA triple helix with a GC.T mismatch by simulation. Biochemistry. 1995 Dec 19;34(50):16269–16278. doi: 10.1021/bi00050a006. [DOI] [PubMed] [Google Scholar]
  49. Williamson J. R., Raghuraman M. K., Cech T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell. 1989 Dec 1;59(5):871–880. doi: 10.1016/0092-8674(89)90610-7. [DOI] [PubMed] [Google Scholar]
  50. Young M. A., Beveridge D. L. Molecular dynamics simulations of an oligonucleotide duplex with adenine tracts phased by a full helix turn. J Mol Biol. 1998 Aug 28;281(4):675–687. doi: 10.1006/jmbi.1998.1962. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES