Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):491–497. doi: 10.1016/S0006-3495(01)76031-6

Structure of a serpin-enzyme complex probed by cysteine substitutions and fluorescence spectroscopy.

J P Ludeman 1, J C Whisstock 1, P C Hopkins 1, B F Le Bonniec 1, S P Bottomley 1
PMCID: PMC1301250  PMID: 11159419

Abstract

The x-ray crystal structure of the serpin-proteinase complex is yet to be determined. In this study we have investigated the conformational changes that take place within antitrypsin during complex formation with catalytically inactive (thrombin(S195A)) and active thrombin. Three variants of antitrypsin Pittsburgh (an effective thrombin inhibitor), each containing a unique cysteine residue (Cys(232), Cys(P3'), and Cys(313)) were covalently modified with the fluorescence probe N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine. The presence of the fluorescent label did not affect the structure or inhibitory activity of the serpin. We monitored the changes in the fluorescence emission spectra of each labeled serpin in the native and cleaved state, and in complex with active and inactive thrombin. These data show that the serpin undergoes conformational change upon forming a complex with either active or inactive proteinase. Steady-state fluorescence quenching measurements using potassium iodide were used to further probe the nature and extent of this conformational change. A pronounced conformational change is observed upon locking with an active proteinase; however, our data reveal that docking with the inactive proteinase thrombin(S195A) is also able to induce a conformational change in the serpin.

Full Text

The Full Text of this article is available as a PDF (296.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bode W., Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem. 1992 Mar 1;204(2):433–451. doi: 10.1111/j.1432-1033.1992.tb16654.x. [DOI] [PubMed] [Google Scholar]
  2. Bottomley S. P., Hopkins P. C., Whisstock J. C. Alpha 1-antitrypsin polymerisation can occur by both loop A and C sheet mechanisms. Biochem Biophys Res Commun. 1998 Oct 9;251(1):1–5. doi: 10.1006/bbrc.1998.9254. [DOI] [PubMed] [Google Scholar]
  3. Carrell R. W., Stein P. E., Fermi G., Wardell M. R. Biological implications of a 3 A structure of dimeric antithrombin. Structure. 1994 Apr 15;2(4):257–270. doi: 10.1016/s0969-2126(00)00028-9. [DOI] [PubMed] [Google Scholar]
  4. Cooperman B. S., Stavridi E., Nickbarg E., Rescorla E., Schechter N. M., Rubin H. Antichymotrypsin interaction with chymotrypsin. Partitioning of the complex. J Biol Chem. 1993 Nov 5;268(31):23616–23625. [PubMed] [Google Scholar]
  5. Eftink M. R., Ghiron C. A. Fluorescence quenching studies with proteins. Anal Biochem. 1981 Jul 1;114(2):199–227. doi: 10.1016/0003-2697(81)90474-7. [DOI] [PubMed] [Google Scholar]
  6. Elliott P. R., Lomas D. A., Carrell R. W., Abrahams J. P. Inhibitory conformation of the reactive loop of alpha 1-antitrypsin. Nat Struct Biol. 1996 Aug;3(8):676–681. doi: 10.1038/nsb0896-676. [DOI] [PubMed] [Google Scholar]
  7. Gooptu B., Hazes B., Chang W. S., Dafforn T. R., Carrell R. W., Read R. J., Lomas D. A. Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):67–72. doi: 10.1073/pnas.97.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hopkins P. C., Carrell R. W., Stone S. R. Effects of mutations in the hinge region of serpins. Biochemistry. 1993 Aug 3;32(30):7650–7657. doi: 10.1021/bi00081a008. [DOI] [PubMed] [Google Scholar]
  9. Hopkins P. C., Stone S. R. The contribution of the conserved hinge region residues of alpha1-antitrypsin to its reaction with elastase. Biochemistry. 1995 Dec 5;34(48):15872–15879. doi: 10.1021/bi00048a033. [DOI] [PubMed] [Google Scholar]
  10. Hubbard S. J., Campbell S. F., Thornton J. M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol. 1991 Jul 20;220(2):507–530. doi: 10.1016/0022-2836(91)90027-4. [DOI] [PubMed] [Google Scholar]
  11. James E. L., Whisstock J. C., Gore M. G., Bottomley S. P. Probing the unfolding pathway of alpha1-antitrypsin. J Biol Chem. 1999 Apr 2;274(14):9482–9488. doi: 10.1074/jbc.274.14.9482. [DOI] [PubMed] [Google Scholar]
  12. Lawrence D. A., Ginsburg D., Day D. E., Berkenpas M. B., Verhamme I. M., Kvassman J. O., Shore J. D. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem. 1995 Oct 27;270(43):25309–25312. doi: 10.1074/jbc.270.43.25309. [DOI] [PubMed] [Google Scholar]
  13. Le Bonniec B. F., Guinto E. R., MacGillivray R. T., Stone S. R., Esmon C. T. The role of thrombin's Tyr-Pro-Pro-Trp motif in the interaction with fibrinogen, thrombomodulin, protein C, antithrombin III, and the Kunitz inhibitors. J Biol Chem. 1993 Sep 5;268(25):19055–19061. [PubMed] [Google Scholar]
  14. Le Bonniec B. F., Guinto E. R., Stone S. R. Identification of thrombin residues that modulate its interactions with antithrombin III and alpha 1-antitrypsin. Biochemistry. 1995 Sep 26;34(38):12241–12248. doi: 10.1021/bi00038a019. [DOI] [PubMed] [Google Scholar]
  15. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  16. Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
  17. Mast A. E., Enghild J. J., Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. Biochemistry. 1992 Mar 17;31(10):2720–2728. doi: 10.1021/bi00125a012. [DOI] [PubMed] [Google Scholar]
  18. O'Malley K. M., Nair S. A., Rubin H., Cooperman B. S. The kinetic mechanism of serpin-proteinase complex formation. An intermediate between the michaelis complex and the inhibited complex. J Biol Chem. 1997 Feb 21;272(8):5354–5359. doi: 10.1074/jbc.272.8.5354. [DOI] [PubMed] [Google Scholar]
  19. Picard V., Marque P. E., Paolucci F., Aiach M., Le Bonniec B. F. Topology of the stable serpin-protease complexes revealed by an autoantibody that fails to react with the monomeric conformers of antithrombin. J Biol Chem. 1999 Feb 19;274(8):4586–4593. doi: 10.1074/jbc.274.8.4586. [DOI] [PubMed] [Google Scholar]
  20. Potempa J., Korzus E., Travis J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem. 1994 Jun 10;269(23):15957–15960. [PubMed] [Google Scholar]
  21. Qiu X., Padmanabhan K. P., Carperos V. E., Tulinsky A., Kline T., Maraganore J. M., Fenton J. W., 2nd Structure of the hirulog 3-thrombin complex and nature of the S' subsites of substrates and inhibitors. Biochemistry. 1992 Dec 1;31(47):11689–11697. doi: 10.1021/bi00162a004. [DOI] [PubMed] [Google Scholar]
  22. Sali A., Blundell T. L. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993 Dec 5;234(3):779–815. doi: 10.1006/jmbi.1993.1626. [DOI] [PubMed] [Google Scholar]
  23. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  24. Schreuder H. A., de Boer B., Dijkema R., Mulders J., Theunissen H. J., Grootenhuis P. D., Hol W. G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat Struct Biol. 1994 Jan;1(1):48–54. doi: 10.1038/nsb0194-48. [DOI] [PubMed] [Google Scholar]
  25. Shore J. D., Day D. E., Francis-Chmura A. M., Verhamme I., Kvassman J., Lawrence D. A., Ginsburg D. A fluorescent probe study of plasminogen activator inhibitor-1. Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J Biol Chem. 1995 Mar 10;270(10):5395–5398. doi: 10.1074/jbc.270.10.5395. [DOI] [PubMed] [Google Scholar]
  26. Skinner R., Abrahams J. P., Whisstock J. C., Lesk A. M., Carrell R. W., Wardell M. R. The 2.6 A structure of antithrombin indicates a conformational change at the heparin binding site. J Mol Biol. 1997 Feb 28;266(3):601–609. doi: 10.1006/jmbi.1996.0798. [DOI] [PubMed] [Google Scholar]
  27. Stein P. E., Carrell R. W. What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol. 1995 Feb;2(2):96–113. doi: 10.1038/nsb0295-96. [DOI] [PubMed] [Google Scholar]
  28. Stein P., Chothia C. Serpin tertiary structure transformation. J Mol Biol. 1991 Sep 20;221(2):615–621. doi: 10.1016/0022-2836(91)80076-7. [DOI] [PubMed] [Google Scholar]
  29. Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
  30. Stone S. R., Le Bonniec B. F. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease. J Mol Biol. 1997 Jan 24;265(3):344–362. doi: 10.1006/jmbi.1996.0727. [DOI] [PubMed] [Google Scholar]
  31. Stone S. R., Whisstock J. C., Bottomley S. P., Hopkins P. C. Serpins. A mechanistic class of their own. Adv Exp Med Biol. 1997;425:5–15. [PubMed] [Google Scholar]
  32. Stratikos E., Gettins P. G. Formation of the covalent serpin-proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4808–4813. doi: 10.1073/pnas.96.9.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stratikos E., Gettins P. G. Major proteinase movement upon stable serpin-proteinase complex formation. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):453–458. doi: 10.1073/pnas.94.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stratikos E., Gettins P. G. Mapping the serpin-proteinase complex using single cysteine variants of alpha1-proteinase inhibitor Pittsburgh. J Biol Chem. 1998 Jun 19;273(25):15582–15589. doi: 10.1074/jbc.273.25.15582. [DOI] [PubMed] [Google Scholar]
  35. Whisstock J. C., Skinner R., Carrell R. W., Lesk A. M. Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin. J Mol Biol. 2000 Jan 21;295(3):651–665. doi: 10.1006/jmbi.1999.3375. [DOI] [PubMed] [Google Scholar]
  36. Whisstock J., Lesk A. M., Carrell R. Modeling of serpin-protease complexes: antithrombin-thrombin, alpha 1-antitrypsin (358Met-->Arg)-thrombin, alpha 1-antitrypsin (358Met-->Arg)-trypsin, and antitrypsin-elastase. Proteins. 1996 Nov;26(3):288–303. doi: 10.1002/(SICI)1097-0134(199611)26:3<288::AID-PROT5>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  37. Wilczynska M., Fa M., Karolin J., Ohlsson P. I., Johansson L. B., Ny T. Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. Nat Struct Biol. 1997 May;4(5):354–357. doi: 10.1038/nsb0597-354. [DOI] [PubMed] [Google Scholar]
  38. Wright H. T. The structural puzzle of how serpin serine proteinase inhibitors work. Bioessays. 1996 Jun;18(6):453–464. doi: 10.1002/bies.950180607. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES