Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):505–515. doi: 10.1016/S0006-3495(01)76033-X

Anisotropy of fluctuation dynamics of proteins with an elastic network model.

A R Atilgan 1, S R Durell 1, R L Jernigan 1, M C Demirel 1, O Keskin 1, I Bahar 1
PMCID: PMC1301252  PMID: 11159421

Abstract

Fluctuations about the native conformation of proteins have proven to be suitably reproduced with a simple elastic network model, which has shown excellent agreement with a number of different properties for a wide variety of proteins. This scalar model simply investigates the magnitudes of motion of individual residues in the structure. To use the elastic model approach further for developing the details of protein mechanisms, it becomes essential to expand this model to include the added details of the directions of individual residue fluctuations. In this paper a new tool is presented for this purpose and applied to the retinol-binding protein, which indicates enhanced flexibility in the region of entry to the ligand binding site and for the portion of the protein binding to its carrier protein.

Full Text

The Full Text of this article is available as a PDF (472.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  2. Bahar I., Atilgan A. R., Erman B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des. 1997;2(3):173–181. doi: 10.1016/S1359-0278(97)00024-2. [DOI] [PubMed] [Google Scholar]
  3. Bahar I., Erman B., Jernigan R. L., Atilgan A. R., Covell D. G. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. J Mol Biol. 1999 Jan 22;285(3):1023–1037. doi: 10.1006/jmbi.1998.2371. [DOI] [PubMed] [Google Scholar]
  4. Bahar I., Jernigan R. L. Cooperative fluctuations and subunit communication in tryptophan synthase. Biochemistry. 1999 Mar 23;38(12):3478–3490. doi: 10.1021/bi982697v. [DOI] [PubMed] [Google Scholar]
  5. Bahar I., Jernigan R. L. Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J Mol Biol. 1997 Feb 14;266(1):195–214. doi: 10.1006/jmbi.1996.0758. [DOI] [PubMed] [Google Scholar]
  6. Bahar I., Jernigan R. L. Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms. J Mol Biol. 1998 Sep 4;281(5):871–884. doi: 10.1006/jmbi.1998.1978. [DOI] [PubMed] [Google Scholar]
  7. Bahar I., Wallqvist A., Covell D. G., Jernigan R. L. Correlation between native-state hydrogen exchange and cooperative residue fluctuations from a simple model. Biochemistry. 1998 Jan 27;37(4):1067–1075. doi: 10.1021/bi9720641. [DOI] [PubMed] [Google Scholar]
  8. Barbato G., Ikura M., Kay L. E., Pastor R. W., Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry. 1992 Jun 16;31(23):5269–5278. doi: 10.1021/bi00138a005. [DOI] [PubMed] [Google Scholar]
  9. Brooks B., Karplus M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6571–6575. doi: 10.1073/pnas.80.21.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Caves L. S., Evanseck J. D., Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci. 1998 Mar;7(3):649–666. doi: 10.1002/pro.5560070314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chau P. L., van Aalten D. M., Bywater R. P., Findlay J. B. Functional concerted motions in the bovine serum retinol-binding protein. J Comput Aided Mol Des. 1999 Jan;13(1):11–20. doi: 10.1023/a:1008099903676. [DOI] [PubMed] [Google Scholar]
  12. Damaschun G., Damaschun H., Gast K., Zirwer D. Proteins can adopt totally different folded conformations. J Mol Biol. 1999 Aug 20;291(3):715–725. doi: 10.1006/jmbi.1999.3009. [DOI] [PubMed] [Google Scholar]
  13. Demirel M. C., Atilgan A. R., Jernigan R. L., Erman B., Bahar I. Identification of kinetically hot residues in proteins. Protein Sci. 1998 Dec;7(12):2522–2532. doi: 10.1002/pro.5560071205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doruker P., Atilgan A. R., Bahar I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor. Proteins. 2000 Aug 15;40(3):512–524. [PubMed] [Google Scholar]
  15. Elber R, Karplus M. Low-frequency modes in proteins: Use of the effective-medium approximation to interpret the fractal dimension observed in electron-spin relaxation measurements. Phys Rev Lett. 1986 Jan 27;56(4):394–397. doi: 10.1103/PhysRevLett.56.394. [DOI] [PubMed] [Google Scholar]
  16. Frauenfelder H., McMahon B. Dynamics and function of proteins: the search for general concepts. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4795–4797. doi: 10.1073/pnas.95.9.4795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  18. García A. E., Harman J. G. Simulations of CRP:(cAMP)2 in noncrystalline environments show a subunit transition from the open to the closed conformation. Protein Sci. 1996 Jan;5(1):62–71. doi: 10.1002/pro.5560050108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. García AE. Large-amplitude nonlinear motions in proteins. Phys Rev Lett. 1992 Apr 27;68(17):2696–2699. doi: 10.1103/PhysRevLett.68.2696. [DOI] [PubMed] [Google Scholar]
  20. Go N., Noguti T., Nishikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3696–3700. doi: 10.1073/pnas.80.12.3696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haliloglu T., Bahar I. Structure-based analysis of protein dynamics: comparison of theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins. 1999 Dec 1;37(4):654–667. doi: 10.1002/(sici)1097-0134(19991201)37:4<654::aid-prot15>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  22. Hayward S., Kitao A., Go N. Harmonic and anharmonic aspects in the dynamics of BPTI: a normal mode analysis and principal component analysis. Protein Sci. 1994 Jun;3(6):936–943. doi: 10.1002/pro.5560030608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hayward S., Kitao A., Go N. Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis. Proteins. 1995 Oct;23(2):177–186. doi: 10.1002/prot.340230207. [DOI] [PubMed] [Google Scholar]
  24. Hinsen K. Analysis of domain motions by approximate normal mode calculations. Proteins. 1998 Nov 15;33(3):417–429. doi: 10.1002/(sici)1097-0134(19981115)33:3<417::aid-prot10>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  25. Hinsen K., Thomas A., Field M. J. Analysis of domain motions in large proteins. Proteins. 1999 Feb 15;34(3):369–382. [PubMed] [Google Scholar]
  26. Ichiye T., Karplus M. Anisotropy and anharmonicity of atomic fluctuations in proteins: analysis of a molecular dynamics simulation. Proteins. 1987;2(3):236–259. doi: 10.1002/prot.340020308. [DOI] [PubMed] [Google Scholar]
  27. Keskin O., Jernigan R. L., Bahar I. Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys J. 2000 Apr;78(4):2093–2106. doi: 10.1016/S0006-3495(00)76756-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kitao A., Go N. Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol. 1999 Apr;9(2):164–169. doi: 10.1016/S0959-440X(99)80023-2. [DOI] [PubMed] [Google Scholar]
  29. Kobayashi N., Yamato T., Go N. Mechanical property of a TIM-barrel protein. Proteins. 1997 May;28(1):109–116. doi: 10.1002/(sici)1097-0134(199705)28:1<109::aid-prot11>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  30. Kuriyan J., Petsko G. A., Levy R. M., Karplus M. Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. J Mol Biol. 1986 Jul 20;190(2):227–254. doi: 10.1016/0022-2836(86)90295-0. [DOI] [PubMed] [Google Scholar]
  31. Mozzarelli A., Rivetti C., Rossi G. L., Henry E. R., Eaton W. A. Crystals of haemoglobin with the T quaternary structure bind oxygen noncooperatively with no Bohr effect. Nature. 1991 May 30;351(6325):416–419. doi: 10.1038/351416a0. [DOI] [PubMed] [Google Scholar]
  32. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  33. Naylor H. M., Newcomer M. E. The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP. Biochemistry. 1999 Mar 2;38(9):2647–2653. doi: 10.1021/bi982291i. [DOI] [PubMed] [Google Scholar]
  34. Tirion MM. Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett. 1996 Aug 26;77(9):1905–1908. doi: 10.1103/PhysRevLett.77.1905. [DOI] [PubMed] [Google Scholar]
  35. Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science. 2000 Jun 2;288(5471):1604–1607. doi: 10.1126/science.288.5471.1604. [DOI] [PubMed] [Google Scholar]
  36. Zanotti G., Panzalorto M., Marcato A., Malpeli G., Folli C., Berni R. Structure of pig plasma retinol-binding protein at 1.65 A resolution. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):1049–1052. doi: 10.1107/s0907444998002303. [DOI] [PubMed] [Google Scholar]
  37. Zhou Y., Vitkup D., Karplus M. Native proteins are surface-molten solids: application of the Lindemann criterion for the solid versus liquid state. J Mol Biol. 1999 Jan 29;285(4):1371–1375. doi: 10.1006/jmbi.1998.2374. [DOI] [PubMed] [Google Scholar]
  38. van Aalten D. M., Conn D. A., de Groot B. L., Berendsen H. J., Findlay J. B., Amadei A. Protein dynamics derived from clusters of crystal structures. Biophys J. 1997 Dec;73(6):2891–2896. doi: 10.1016/S0006-3495(97)78317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Aalten D. M., Jones P. C., de Sousa M., Findlay J. B. Engineering protein mechanics: inhibition of concerted motions of the cellular retinol binding protein by site-directed mutagenesis. Protein Eng. 1997 Jan;10(1):31–37. doi: 10.1093/protein/10.1.31. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES