Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):531–541. doi: 10.1016/S0006-3495(01)76035-3

Holding forces of single-particle dielectrophoretic traps.

J Voldman 1, R A Braff 1, M Toner 1, M L Gray 1, M A Schmidt 1
PMCID: PMC1301254  PMID: 11159423

Abstract

We present experimental results and modeling on the efficacy of dielectrophoresis-based single-particle traps. Dielectrophoretic forces, caused by the interaction of nonuniform electric fields with objects, have been used to make planar quadrupole traps that can trap single beads. A simple experimental protocol was then used to measure how well the traps could hold beads against destabilizing fluid flows. These were compared with predictions from modeling and found to be in close agreement, allowing the determination of sub-piconewton forces. This not only validates our ability to model dielectrophoretic forces in these traps but also gives insight into the physical behavior of particles in dielectrophoresis-based traps. Anomalous frequency effects, not explainable by dielectrophoretic forces alone, were also encountered and attributed to electrohydrodynamic flows. Such knowledge can now be used to design traps for cell-based applications.

Full Text

The Full Text of this article is available as a PDF (241.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng J., Sheldon E. L., Wu L., Uribe A., Gerrue L. O., Carrino J., Heller M. J., O'Connell J. P. Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat Biotechnol. 1998 Jun;16(6):541–546. doi: 10.1038/nbt0698-541. [DOI] [PubMed] [Google Scholar]
  2. Fuhr G., Arnold W. M., Hagedorn R., Müller T., Benecke W., Wagner B., Zimmermann U. Levitation, holding, and rotation of cells within traps made by high-frequency fields. Biochim Biophys Acta. 1992 Jul 27;1108(2):215–223. doi: 10.1016/0005-2736(92)90028-k. [DOI] [PubMed] [Google Scholar]
  3. Hughes M. P., Morgan H. Measurement of bacterial flagellar thrust by negative dielectrophoresis. Biotechnol Prog. 1999 Mar-Apr;15(2):245–249. doi: 10.1021/bp990019+. [DOI] [PubMed] [Google Scholar]
  4. Kaler K. V., Jones T. B. Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J. 1990 Feb;57(2):173–182. doi: 10.1016/S0006-3495(90)82520-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Markx G. H., Talary M. S., Pethig R. Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol. 1994 Jan 15;32(1):29–37. doi: 10.1016/0168-1656(94)90117-1. [DOI] [PubMed] [Google Scholar]
  6. Schwan H. P. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng. 1992;20(3):269–288. doi: 10.1007/BF02368531. [DOI] [PubMed] [Google Scholar]
  7. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  8. Talary M. S., Mills K. I., Hoy T., Burnett A. K., Pethig R. Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput. 1995 Mar;33(2):235–237. doi: 10.1007/BF02523050. [DOI] [PubMed] [Google Scholar]
  9. Washizu M., Jones T. B., Kaler K. V. Higher-order dielectrophoretic effects: levitation at a field null. Biochim Biophys Acta. 1993 Aug 20;1158(1):40–46. doi: 10.1016/0304-4165(93)90094-o. [DOI] [PubMed] [Google Scholar]
  10. Yoda K., Saito Y., Sakamoto H. Dose optimization of proton and heavy ion therapy using generalized sampled pattern matching. Phys Med Biol. 1997 Dec;42(12):2411–2420. doi: 10.1088/0031-9155/42/12/008. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES