Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):565–578. doi: 10.1016/S0006-3495(01)76038-9

Changes in a phospholipid bilayer induced by the hydrolysis of a phospholipase A2 enzyme: a molecular dynamics simulation study.

M T Hyvönen 1, K Oörni 1, P T Kovanen 1, M Ala-Korpela 1
PMCID: PMC1301257  PMID: 11159426

Abstract

Phospholipase A2 (PLA2) enzymes are important in numerous physiological processes. Their function at lipid-water interfaces is also used as a biophysical model for protein-membrane interactions. These enzymes catalyze the hydrolysis of the sn-2 bonds of various phospholipids and the hydrolysis products are known to increase the activity of the enzymes. Here, we have applied molecular dynamics (MD) simulations to study the membrane properties in three compositionally different systems that relate to PLA2 enzyme action. One-nanosecond simulations were performed for a 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) bilayer and for two of its PLA2-hydrolyzed versions, i.e., bilayers consisting of lysophospholipids and of either free charged linoleate or free uncharged linoleic acid molecules. The results revealed loosening of the structure in the hydrolyzed bilayer due to increased mobility of the molecules in the direction normal to the bilayer. This loss of integrity due to the hydrolysis products is in accord with observations that not only the presence of hydrolysis products, but also a variety of other perturbations of the membrane may activate PLA2. Additionally, changes were observed in other structural parameters and in the electrostatic potential across the membrane-water interface. These changes are discussed in relation to the simulation methodology and the experimental observations of PLA2-hydrolyzed membranes.

Full Text

The Full Text of this article is available as a PDF (670.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams F. S., Chattopadhyay A., London E. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry. 1992 Jun 16;31(23):5322–5327. doi: 10.1021/bi00138a011. [DOI] [PubMed] [Google Scholar]
  2. Akutsu H., Nagamori T. Conformational analysis of the polar head group in phosphatidylcholine bilayers: a structural change induced by cations. Biochemistry. 1991 May 7;30(18):4510–4516. doi: 10.1021/bi00232a020. [DOI] [PubMed] [Google Scholar]
  3. Apitz-Castro R., Jain M. K., De Haas G. H. Origin of the latency phase during the action of phospholipase A2 on unmodified phosphatidylcholine vesicles. Biochim Biophys Acta. 1982 Jun 14;688(2):349–356. doi: 10.1016/0005-2736(82)90346-7. [DOI] [PubMed] [Google Scholar]
  4. Basáez G., Nieva J. L., Goñi F. M., Alonso A. Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. Biochemistry. 1996 Dec 3;35(48):15183–15187. doi: 10.1021/bi9616561. [DOI] [PubMed] [Google Scholar]
  5. Bell J. D., Biltonen R. L. Molecular details of the activation of soluble phospholipase A2 on lipid bilayers. Comparison of computer simulations with experimental results. J Biol Chem. 1992 Jun 5;267(16):11046–11056. [PubMed] [Google Scholar]
  6. Bell J. D., Burnside M., Owen J. A., Royall M. L., Baker M. L. Relationships between bilayer structure and phospholipase A2 activity: interactions among temperature, diacylglycerol, lysolecithin, palmitic acid, and dipalmitoylphosphatidylcholine. Biochemistry. 1996 Apr 16;35(15):4945–4955. doi: 10.1021/bi952274i. [DOI] [PubMed] [Google Scholar]
  7. Belohorcová K., Davis J. H., Woolf T. B., Roux B. Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys J. 1997 Dec;73(6):3039–3055. doi: 10.1016/S0006-3495(97)78332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bent E. D., Bell J. D. Quantification of the interactions among fatty acid, lysophosphatidylcholine, calcium, dimyristoylphosphatidylcholine vesicles, and phospholipase A2. Biochim Biophys Acta. 1995 Feb 9;1254(3):349–360. doi: 10.1016/0005-2760(94)00201-9. [DOI] [PubMed] [Google Scholar]
  9. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burack W. R., Biltonen R. L. Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chem Phys Lipids. 1994 Sep 6;73(1-2):209–222. doi: 10.1016/0009-3084(94)90182-1. [DOI] [PubMed] [Google Scholar]
  11. Burack W. R., Dibble A. R., Allietta M. M., Biltonen R. L. Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry. 1997 Aug 26;36(34):10551–10557. doi: 10.1021/bi970509f. [DOI] [PubMed] [Google Scholar]
  12. Burack W. R., Gadd M. E., Biltonen R. L. Modulation of phospholipase A2: identification of an inactive membrane-bound state. Biochemistry. 1995 Nov 14;34(45):14819–14828. doi: 10.1021/bi00045a024. [DOI] [PubMed] [Google Scholar]
  13. Burack W. R., Yuan Q., Biltonen R. L. Role of lateral phase separation in the modulation of phospholipase A2 activity. Biochemistry. 1993 Jan 19;32(2):583–589. doi: 10.1021/bi00053a025. [DOI] [PubMed] [Google Scholar]
  14. Chiu S. W., Clark M., Balaji V., Subramaniam S., Scott H. L., Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J. 1995 Oct;69(4):1230–1245. doi: 10.1016/S0006-3495(95)80005-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Damodaran K. V., Merz K. M., Jr A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J. 1994 Apr;66(4):1076–1087. doi: 10.1016/S0006-3495(94)80889-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Essmann U., Berkowitz M. L. Dynamical properties of phospholipid bilayers from computer simulation. Biophys J. 1999 Apr;76(4):2081–2089. doi: 10.1016/S0006-3495(99)77364-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feller S. E., Pastor R. W. On simulating lipid bilayers with an applied surface tension: periodic boundary conditions and undulations. Biophys J. 1996 Sep;71(3):1350–1355. doi: 10.1016/S0006-3495(96)79337-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gelb M. H., Cho W., Wilton D. C. Interfacial binding of secreted phospholipases A(2): more than electrostatics and a major role for tryptophan. Curr Opin Struct Biol. 1999 Aug;9(4):428–432. doi: 10.1016/S0959-440X(99)80059-1. [DOI] [PubMed] [Google Scholar]
  21. Ghomashchi F., Yu B. Z., Berg O., Jain M. K., Gelb M. H. Interfacial catalysis by phospholipase A2: substrate specificity in vesicles. Biochemistry. 1991 Jul 23;30(29):7318–7329. doi: 10.1021/bi00243a037. [DOI] [PubMed] [Google Scholar]
  22. Grandbois M., Clausen-Schaumann H., Gaub H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys J. 1998 May;74(5):2398–2404. doi: 10.1016/S0006-3495(98)77948-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Han S. K., Yoon E. T., Scott D. L., Sigler P. B., Cho W. Structural aspects of interfacial adsorption. A crystallographic and site-directed mutagenesis study of the phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. J Biol Chem. 1997 Feb 7;272(6):3573–3582. [PubMed] [Google Scholar]
  24. Henshaw J. B., Olsen C. A., Farnbach A. R., Nielson K. H., Bell J. D. Definition of the specific roles of lysolecithin and palmitic acid in altering the susceptibility of dipalmitoylphosphatidylcholine bilayers to phospholipase A2. Biochemistry. 1998 Jul 28;37(30):10709–10721. doi: 10.1021/bi9728809. [DOI] [PubMed] [Google Scholar]
  25. Hyvönen M. T., Rantala T. T., Ala-Korpela M. Structure and dynamic properties of diunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer from molecular dynamics simulation. Biophys J. 1997 Dec;73(6):2907–2923. doi: 10.1016/S0006-3495(97)78319-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
  27. Jain M. K., De Haas G. H. Activation of phospholipase A2 by freshly added lysophospholipids. Biochim Biophys Acta. 1983 Dec 21;736(2):157–162. doi: 10.1016/0005-2736(83)90279-1. [DOI] [PubMed] [Google Scholar]
  28. Jain M. K., Jahagirdar D. V. Action of phospholipase A2 on bilayers. Effect of fatty acid and lysophospholipid additives on the kinetic parameters. Biochim Biophys Acta. 1985 Apr 11;814(2):313–318. doi: 10.1016/0005-2736(85)90450-x. [DOI] [PubMed] [Google Scholar]
  29. Jones S. T., Ahlström P., Berendsen H. J., Pickersgill R. W. Molecular dynamics simulation of a phospholipase A2-substrate complex. Biochim Biophys Acta. 1993 Mar 5;1162(1-2):135–142. doi: 10.1016/0167-4838(93)90139-i. [DOI] [PubMed] [Google Scholar]
  30. Jähnig F. What is the surface tension of a lipid bilayer membrane? Biophys J. 1996 Sep;71(3):1348–1349. doi: 10.1016/S0006-3495(96)79336-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Laaksonen L. A graphics program for the analysis and display of molecular dynamics trajectories. J Mol Graph. 1992 Mar;10(1):33-4, 24. doi: 10.1016/0263-7855(92)80007-z. [DOI] [PubMed] [Google Scholar]
  32. Lehtonen J. Y., Kinnunen P. K. Phospholipase A2 as a mechanosensor. Biophys J. 1995 May;68(5):1888–1894. doi: 10.1016/S0006-3495(95)80366-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Marrink S. J., Jähnig F., Berendsen H. J. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J. 1996 Aug;71(2):632–647. doi: 10.1016/S0006-3495(96)79264-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McLean L. R., Hagaman K. A., Davidson W. S. Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids. 1993 Jun;28(6):505–509. doi: 10.1007/BF02536081. [DOI] [PubMed] [Google Scholar]
  35. Murakami M., Nakatani Y., Atsumi G., Inoue K., Kudo I. Regulatory functions of phospholipase A2. Crit Rev Immunol. 1997;17(3-4):225–283. doi: 10.1615/critrevimmunol.v17.i3-4.10. [DOI] [PubMed] [Google Scholar]
  36. Roux B. Commentary: surface tension of biomembranes. Biophys J. 1996 Sep;71(3):1346–1347. doi: 10.1016/S0006-3495(96)79335-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scott D. L., Sigler P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem. 1994;45:53–88. doi: 10.1016/s0065-3233(08)60638-5. [DOI] [PubMed] [Google Scholar]
  38. Sheffield M. J., Baker B. L., Li D., Owen N. L., Baker M. L., Bell J. D. Enhancement of Agkistrodon piscivorus piscivorus venom phospholipase A2 activity toward phosphatidylcholine vesicles by lysolecithin and palmitic acid: studies with fluorescent probes of membrane structure. Biochemistry. 1995 Jun 20;34(24):7796–7806. doi: 10.1021/bi00024a003. [DOI] [PubMed] [Google Scholar]
  39. Simon S. A., McIntosh T. J. Magnitude of the solvation pressure depends on dipole potential. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9263–9267. doi: 10.1073/pnas.86.23.9263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  42. Voglino L., McIntosh T. J., Simon S. A. Modulation of the binding of signal peptides to lipid bilayers by dipoles near the hydrocarbon-water interface. Biochemistry. 1998 Sep 1;37(35):12241–12252. doi: 10.1021/bi9805792. [DOI] [PubMed] [Google Scholar]
  43. Volwerk J. J., Jost P. C., de Haas G. H., Griffith O. H. Activation of porcine pancreatic phospholipase A2 by the presence of negative charges at the lipid-water interface. Biochemistry. 1986 Apr 8;25(7):1726–1733. doi: 10.1021/bi00355a042. [DOI] [PubMed] [Google Scholar]
  44. Wilson M. A., Pohorille A. Mechanism of unassisted ion transport across membrane bilayers. J Am Chem Soc. 1996 Jul 17;118(28):6580–6587. doi: 10.1021/ja9540381. [DOI] [PubMed] [Google Scholar]
  45. Wymore T., Wong T. C. Molecular dynamics study of substance P peptides partitioned in a sodium dodecylsulfate micelle. Biophys J. 1999 Mar;76(3):1213–1227. doi: 10.1016/S0006-3495(99)77285-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhou F., Schulten K. Molecular dynamics study of phospholipase A2 on a membrane surface. Proteins. 1996 May;25(1):12–27. doi: 10.1002/(SICI)1097-0134(199605)25:1<12::AID-PROT2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES