Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Feb;80(2):635–642. doi: 10.1016/S0006-3495(01)76044-4

Dynamical view of the positions of key side chains in protein-protein recognition.

S R Kimura 1, R C Brower 1, S Vajda 1, C J Camacho 1
PMCID: PMC1301263  PMID: 11159432

Abstract

When a complex is constructed from the separately determined rigid structures of a receptor and its ligand, some key side chains are usually in wrong positions. These distortions of the interface yield an apparent loss in affinity and would unfavorably affect the kinetics of association. It is generally assumed that the interacting proteins should drive the appropriate conformational changes, leading to their complementarity, but this hypothesis does not explain their fast association rates. However, nanosecond explicit solvent molecular dynamics simulations of misfolded surface side chains from the independently solved structures of barstar, bovine pancreatic trypsin inhibitor, and lysozyme show that even before any receptor-ligand interaction, key side chains frequently visit the rotamer conformations seen in the complex. We show that these simple structural motifs can reconcile most of the binding affinity required for a rapid and highly specific association process. Side chains amenable to induced fit are also identified. These results corroborate that solvent-side chain interactions play a critical role in the recognition process. Our findings are also supported by crystallographic data.

Full Text

The Full Text of this article is available as a PDF (809.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunne R. M., Liepinsh E., Otting G., Wüthrich K., van Gunsteren W. F. Hydration of proteins. A comparison of experimental residence times of water molecules solvating the bovine pancreatic trypsin inhibitor with theoretical model calculations. J Mol Biol. 1993 Jun 20;231(4):1040–1048. doi: 10.1006/jmbi.1993.1350. [DOI] [PubMed] [Google Scholar]
  2. Camacho C. J., Gatchell D. W., Kimura S. R., Vajda S. Scoring docked conformations generated by rigid-body protein-protein docking. Proteins. 2000 Aug 15;40(3):525–537. doi: 10.1002/1097-0134(20000815)40:3<525::aid-prot190>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  3. Camacho C. J., Kimura S. R., DeLisi C., Vajda S. Kinetics of desolvation-mediated protein-protein binding. Biophys J. 2000 Mar;78(3):1094–1105. doi: 10.1016/S0006-3495(00)76668-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camacho C. J., Weng Z., Vajda S., DeLisi C. Free energy landscapes of encounter complexes in protein-protein association. Biophys J. 1999 Mar;76(3):1166–1178. doi: 10.1016/S0006-3495(99)77281-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castro M. J., Anderson S. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Biochemistry. 1996 Sep 3;35(35):11435–11446. doi: 10.1021/bi960515w. [DOI] [PubMed] [Google Scholar]
  6. Dunbrack R. L., Jr, Cohen F. E. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 1997 Aug;6(8):1661–1681. doi: 10.1002/pro.5560060807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jackson R. M., Gabb H. A., Sternberg M. J. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol. 1998 Feb 13;276(1):265–285. doi: 10.1006/jmbi.1997.1519. [DOI] [PubMed] [Google Scholar]
  8. Jorgensen W. L. Rusting of the lock and key model for protein-ligand binding. Science. 1991 Nov 15;254(5034):954–955. doi: 10.1126/science.1719636. [DOI] [PubMed] [Google Scholar]
  9. KOSHLAND D. E., Jr CORRELATION OF STRUCTURE AND FUNCTION IN ENZYME ACTION. Science. 1963 Dec 20;142(3599):1533–1541. doi: 10.1126/science.142.3599.1533. [DOI] [PubMed] [Google Scholar]
  10. Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krystek S., Stouch T., Novotny J. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures. J Mol Biol. 1993 Dec 5;234(3):661–679. doi: 10.1006/jmbi.1993.1619. [DOI] [PubMed] [Google Scholar]
  12. Langley J. N. On the contraction of muscle, chiefly in relation to the presence of "receptive" substances: Part I. J Physiol. 1907 Dec 31;36(4-5):347–384. doi: 10.1113/jphysiol.1907.sp001236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee M. R., Duan Y., Kollman P. A. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins. 2000 Jun 1;39(4):309–316. [PubMed] [Google Scholar]
  14. Lo Conte L., Chothia C., Janin J. The atomic structure of protein-protein recognition sites. J Mol Biol. 1999 Feb 5;285(5):2177–2198. doi: 10.1006/jmbi.1998.2439. [DOI] [PubMed] [Google Scholar]
  15. Makarov V. A., Feig M., Andrews B. K., Pettitt B. M. Diffusion of solvent around biomolecular solutes: a molecular dynamics simulation study. Biophys J. 1998 Jul;75(1):150–158. doi: 10.1016/S0006-3495(98)77502-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McCammon J. A., Wolynes P. G., Karplus M. Picosecond dynamics of tyrosine side chains in proteins. Biochemistry. 1979 Mar 20;18(6):927–942. doi: 10.1021/bi00573a001. [DOI] [PubMed] [Google Scholar]
  17. Northrup S. H., Erickson H. P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3338–3342. doi: 10.1073/pnas.89.8.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  19. Schreiber G., Fersht A. R. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry. 1993 May 18;32(19):5145–5150. doi: 10.1021/bi00070a025. [DOI] [PubMed] [Google Scholar]
  20. Schreiber G., Fersht A. R. Rapid, electrostatically assisted association of proteins. Nat Struct Biol. 1996 May;3(5):427–431. doi: 10.1038/nsb0596-427. [DOI] [PubMed] [Google Scholar]
  21. Schwarz F. P., Tello D., Goldbaum F. A., Mariuzza R. A., Poljak R. J. Thermodynamics of antigen-antibody binding using specific anti-lysozyme antibodies. Eur J Biochem. 1995 Mar 1;228(2):388–394. [PubMed] [Google Scholar]
  22. Steinbach P. J., Brooks B. R. Protein hydration elucidated by molecular dynamics simulation. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9135–9139. doi: 10.1073/pnas.90.19.9135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vajda S., Weng Z., Rosenfeld R., DeLisi C. Effect of conformational flexibility and solvation on receptor-ligand binding free energies. Biochemistry. 1994 Nov 29;33(47):13977–13988. doi: 10.1021/bi00251a004. [DOI] [PubMed] [Google Scholar]
  24. Vakser I. A., Aflalo C. Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins. 1994 Dec;20(4):320–329. doi: 10.1002/prot.340200405. [DOI] [PubMed] [Google Scholar]
  25. Vakser I. A., Matar O. G., Lam C. F. A systematic study of low-resolution recognition in protein--protein complexes. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8477–8482. doi: 10.1073/pnas.96.15.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zanotti J. M., Bellissent-Funel M. C., Parello J. Hydration-coupled dynamics in proteins studied by neutron scattering and NMR: the case of the typical EF-hand calcium-binding parvalbumin. Biophys J. 1999 May;76(5):2390–2411. doi: 10.1016/S0006-3495(99)77395-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zauhar R. J., Morgan R. S. A new method for computing the macromolecular electric potential. J Mol Biol. 1985 Dec 20;186(4):815–820. doi: 10.1016/0022-2836(85)90399-7. [DOI] [PubMed] [Google Scholar]
  28. Zhang C., Vasmatzis G., Cornette J. L., DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol. 1997 Apr 4;267(3):707–726. doi: 10.1006/jmbi.1996.0859. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES