Abstract
The effect of external potassium (K) and cesium (Cs) on the inwardly rectifying K channel ROMK2 (K(ir)1.1b) was studied in Xenopus oocytes. Elevating external K from 1 to 10 mM increased whole-cell outward conductance by a factor of 3.4 +/- 0.4 in 15 min and by a factor of 5.7 +/- 0.9 in 30 min (n = 22). Replacing external Na by Cs blocked inward conductance but increased whole-cell conductance by a factor of 4.5 +/- 0.5 over a period of 40 min (n = 15). In addition to this slow increase in conductance, there was also a small, rapid increase in conductance that occurred as soon as ROMK was exposed to external cesium or 10 mM K. This rapid increase could be explained by the observed increase in ROMK single-channel conductance from 6.4 +/- 0.8 pS to 11.1 +/- 0.8 pS (10 mM K, n = 8) or 11.7 +/- 1.2 pS (Cs, n = 8). There was no effect of either 10 mM K or cesium on the high open probability (P(o) = 0.97 +/- 0.01; n = 12) of ROMK outward currents. In patch-clamp recordings, the number of active channels increased when the K concentration at the outside surface was raised from 1 to 50 mM K. In cell-attached patches, exposure to 50 mM external K produced one or more additional channels in 9/16 patches. No change in channel number was observed in patches continuously exposed to 50 mM external K. Hence, the slow increase in whole-cell conductance is interpreted as activation of pre-existing ROMK channels that had been inactivated by low external K. This type of time-dependent channel activation was not seen with IRK1 (K(ir)2.1) or in ROMK2 mutants in which any one of 6 residues, F129, Q133, E132, V121, L117, or K61, were replaced by their respective IRK1 homologs. These results are consistent with a model in which ROMK can exist in either an activated mode or an inactivated mode. Within the activated mode, individual channels undergo rapid transitions between open and closed states. High (10 mM) external K or Cs stabilizes the activated mode, and low external K stabilizes the inactivated mode. Mutation of a pH-sensing site (ROMK2-K61) prevents transitions from activated to inactivated modes. This is consistent with a direct effect of external K or Cs on the gating of ROMK by internal pH.
Full Text
The Full Text of this article is available as a PDF (695.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baukrowitz T., Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995 Oct;15(4):951–960. doi: 10.1016/0896-6273(95)90185-x. [DOI] [PubMed] [Google Scholar]
- Chepilko S., Zhou H., Sackin H., Palmer L. G. Permeation and gating properties of a cloned renal K+ channel. Am J Physiol. 1995 Feb;268(2 Pt 1):C389–C401. doi: 10.1152/ajpcell.1995.268.2.C389. [DOI] [PubMed] [Google Scholar]
- Choe H., Palmer L. G., Sackin H. Structural determinants of gating in inward-rectifier K+ channels. Biophys J. 1999 Apr;76(4):1988–2003. doi: 10.1016/S0006-3495(99)77357-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choe H., Sackin H., Palmer L. G. Permeation properties of inward-rectifier potassium channels and their molecular determinants. J Gen Physiol. 2000 Apr;115(4):391–404. doi: 10.1085/jgp.115.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choe H., Zhou H., Palmer L. G., Sackin H. A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol. 1997 Oct;273(4 Pt 2):F516–F529. doi: 10.1152/ajprenal.1997.273.4.F516. [DOI] [PubMed] [Google Scholar]
- Doi T., Fakler B., Schultz J. H., Schulte U., Brändle U., Weidemann S., Zenner H. P., Lang F., Ruppersberg J. P. Extracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels. J Biol Chem. 1996 Jul 19;271(29):17261–17266. doi: 10.1074/jbc.271.29.17261. [DOI] [PubMed] [Google Scholar]
- Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
- Döring F., Derst C., Wischmeyer E., Karschin C., Schneggenburger R., Daut J., Karschin A. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci. 1998 Nov 1;18(21):8625–8636. doi: 10.1523/JNEUROSCI.18-21-08625.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frindt G., Palmer L. G. Low-conductance K channels in apical membrane of rat cortical collecting tubule. Am J Physiol. 1989 Jan;256(1 Pt 2):F143–F151. doi: 10.1152/ajprenal.1989.256.1.F143. [DOI] [PubMed] [Google Scholar]
- Hagiwara S., Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol. 1974;18(1):61–80. doi: 10.1007/BF01870103. [DOI] [PubMed] [Google Scholar]
- Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene. 1989 Apr 15;77(1):61–68. doi: 10.1016/0378-1119(89)90359-4. [DOI] [PubMed] [Google Scholar]
- Kubo Y., Baldwin T. J., Jan Y. N., Jan L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993 Mar 11;362(6416):127–133. doi: 10.1038/362127a0. [DOI] [PubMed] [Google Scholar]
- Leipziger J., MacGregor G. G., Cooper G. J., Xu J., Hebert S. C., Giebisch G. PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values. Am J Physiol Renal Physiol. 2000 Nov;279(5):F919–F926. doi: 10.1152/ajprenal.2000.279.5.F919. [DOI] [PubMed] [Google Scholar]
- Liu Y., Jurman M. E., Yellen G. Dynamic rearrangement of the outer mouth of a K+ channel during gating. Neuron. 1996 Apr;16(4):859–867. doi: 10.1016/s0896-6273(00)80106-3. [DOI] [PubMed] [Google Scholar]
- Lopatin A. N., Nichols C. G. [K+] dependence of open-channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1). Biophys J. 1996 Aug;71(2):682–694. doi: 10.1016/S0006-3495(96)79268-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGregor G. G., Xu J. Z., McNicholas C. M., Giebisch G., Hebert S. C. Partially active channels produced by PKA site mutation of the cloned renal K+ channel, ROMK2 (kir1.2). Am J Physiol. 1998 Sep;275(3 Pt 2):F415–F422. doi: 10.1152/ajprenal.1998.275.3.F415. [DOI] [PubMed] [Google Scholar]
- Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
- McNicholas C. M., MacGregor G. G., Islas L. D., Yang Y., Hebert S. C., Giebisch G. pH-dependent modulation of the cloned renal K+ channel, ROMK. Am J Physiol. 1998 Dec;275(6 Pt 2):F972–F981. doi: 10.1152/ajprenal.1998.275.6.F972. [DOI] [PubMed] [Google Scholar]
- McNicholas C. M., Wang W., Ho K., Hebert S. C., Giebisch G. Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8077–8081. doi: 10.1073/pnas.91.17.8077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ortega-Sáenz P., Pardal R., Castellano A., López-Barneo J. Collapse of conductance is prevented by a glutamate residue conserved in voltage-dependent K(+) channels. J Gen Physiol. 2000 Aug;116(2):181–190. doi: 10.1085/jgp.116.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer L. G., Choe H., Frindt G. Is the secretory K channel in the rat CCT ROMK? Am J Physiol. 1997 Sep;273(3 Pt 2):F404–F410. doi: 10.1152/ajprenal.1997.273.3.F404. [DOI] [PubMed] [Google Scholar]
- Pardo L. A., Heinemann S. H., Terlau H., Ludewig U., Lorra C., Pongs O., Stühmer W. Extracellular K+ specifically modulates a rat brain K+ channel. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2466–2470. doi: 10.1073/pnas.89.6.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakmann B., Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984 Feb;347:641–657. doi: 10.1113/jphysiol.1984.sp015088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlief T., Schönherr R., Heinemann S. H. Modification of C-type inactivating Shaker potassium channels by chloramine-T. Pflugers Arch. 1996 Feb;431(4):483–493. doi: 10.1007/BF02191894. [DOI] [PubMed] [Google Scholar]
- Schulte U., Hahn H., Konrad M., Jeck N., Derst C., Wild K., Weidemann S., Ruppersberg J. P., Fakler B., Ludwig J. pH gating of ROMK (K(ir)1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15298–15303. doi: 10.1073/pnas.96.26.15298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai T. D., Shuck M. E., Thompson D. P., Bienkowski M. J., Lee K. S. Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes. Am J Physiol. 1995 May;268(5 Pt 1):C1173–C1178. doi: 10.1152/ajpcell.1995.268.5.C1173. [DOI] [PubMed] [Google Scholar]
- Vergani P., Hamilton D., Jarvis S., Blatt M. R. Mutations in the pore regions of the yeast K+ channel YKC1 affect gating by extracellular K+. EMBO J. 1998 Dec 15;17(24):7190–7198. doi: 10.1093/emboj/17.24.7190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W. H., Giebisch G. Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9722–9725. doi: 10.1073/pnas.88.21.9722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Z. C., Yang Y., Hebert S. C. Phosphorylation of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, by cyclic AMP-dependent protein kinase. J Biol Chem. 1996 Apr 19;271(16):9313–9319. doi: 10.1074/jbc.271.16.9313. [DOI] [PubMed] [Google Scholar]
- Zhou H., Chepilko S., Schütt W., Choe H., Palmer L. G., Sackin H. Mutations in the pore region of ROMK enhance Ba2+ block. Am J Physiol. 1996 Dec;271(6 Pt 1):C1949–C1956. doi: 10.1152/ajpcell.1996.271.6.C1949. [DOI] [PubMed] [Google Scholar]