Abstract
The hydrolysis of 1,2-dipalmitoylphosphatidylcholine (DPPC) catalyzed by Streptomyces chromofuscus phospholipase D (PLD) has been investigated using monolayer techniques and polarization-modulated infrared absorption reflection spectroscopy. The spectroscopic analysis of the phosphate groups provides a quantitative estimation of the hydrolysis yield. The hydrolysis kinetics was investigated in dependence on the phase state of the lipid monolayer. It was found that PLD exhibits maximum activity in the liquid-expanded phase, whereas PLA2 has its activity maximum in the two-phase region. A lag phase was observed in all experiments indicating that small amounts of the hydrolysis product 1,2-dipalmitoylphosphatidic acid (DPPA) are needed for initiating the fast hydrolysis reaction. Higher concentrations of DPPA inhibit the hydrolysis. The critical inhibition concentration of DPPA is a function of the monolayer pressure.
Full Text
The Full Text of this article is available as a PDF (84.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apitz-Castro R., Jain M. K., De Haas G. H. Origin of the latency phase during the action of phospholipase A2 on unmodified phosphatidylcholine vesicles. Biochim Biophys Acta. 1982 Jun 14;688(2):349–356. doi: 10.1016/0005-2736(82)90346-7. [DOI] [PubMed] [Google Scholar]
 - Burack W. R., Biltonen R. L. Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chem Phys Lipids. 1994 Sep 6;73(1-2):209–222. doi: 10.1016/0009-3084(94)90182-1. [DOI] [PubMed] [Google Scholar]
 - Burack W. R., Yuan Q., Biltonen R. L. Role of lateral phase separation in the modulation of phospholipase A2 activity. Biochemistry. 1993 Jan 19;32(2):583–589. doi: 10.1021/bi00053a025. [DOI] [PubMed] [Google Scholar]
 - Callisen T. H., Talmon Y. Direct imaging by cryo-TEM shows membrane break-up by phospholipase A2 enzymatic activity. Biochemistry. 1998 Aug 4;37(31):10987–10993. doi: 10.1021/bi980255d. [DOI] [PubMed] [Google Scholar]
 - Cevc G. How membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry. 1987 Oct 6;26(20):6305–6310. doi: 10.1021/bi00394a002. [DOI] [PubMed] [Google Scholar]
 - Chen J. S., Barton P. G. Studies of dialkyl ether phospholipids. II. Requirement for a liquid-crystalline substrate for hydrolysis by cabbage leaf phospholipase D. Can J Biochem. 1971 Dec;49(12):1362–1375. doi: 10.1139/o71-197. [DOI] [PubMed] [Google Scholar]
 - Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
 - Eldar H., Ben-Av P., Schmidt U. S., Livneh E., Liscovitch M. Up-regulation of phospholipase D activity induced by overexpression of protein kinase C-alpha. Studies in intact Swiss/3T3 cells and in detergent-solubilized membranes in vitro. J Biol Chem. 1993 Jun 15;268(17):12560–12564. [PubMed] [Google Scholar]
 - Flach C. R., Brauner J. W., Mendelsohn R. Calcium ion interactions with insoluble phospholipid monolayer films at the A/W interface. External reflection-absorption IR studies. Biophys J. 1993 Nov;65(5):1994–2001. doi: 10.1016/S0006-3495(93)81276-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Garidel P., Johann C., Blume A. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J. 1997 May;72(5):2196–2210. doi: 10.1016/S0006-3495(97)78863-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Geng D., Chura J., Roberts M. F. Activation of phospholipase D by phosphatidic acid. Enhanced vesicle binding, phosphatidic acid-Ca2+ interaction, or an allosteric effect? J Biol Chem. 1998 May 15;273(20):12195–12202. doi: 10.1074/jbc.273.20.12195. [DOI] [PubMed] [Google Scholar]
 - Hirasawa K., Irvine R. F., Dawson R. M. The hydrolysis of phosphatidylinositol monolayers at an air/water interface by the calcium-ion-dependent phosphatidylinositol phosphodiesterase of pig brain. Biochem J. 1981 Feb 1;193(2):607–614. doi: 10.1042/bj1930607. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Horwitz J., Davis L. L. The substrate specificity of brain microsomal phospholipase D. Biochem J. 1993 Nov 1;295(Pt 3):793–798. doi: 10.1042/bj2950793. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Hønger T., Jørgensen K., Biltonen R. L., Mouritsen O. G. Systematic relationship between phospholipase A2 activity and dynamic lipid bilayer microheterogeneity. Biochemistry. 1996 Jul 16;35(28):9003–9006. doi: 10.1021/bi960866a. [DOI] [PubMed] [Google Scholar]
 - Imamura S., Horiuti Y. Enzymatic determination of phospholipase D activity with choline oxidase. J Biochem. 1978 Mar;83(3):677–680. doi: 10.1093/oxfordjournals.jbchem.a131960. [DOI] [PubMed] [Google Scholar]
 - Jain M. K., Yu B. Z., Kozubek A. Binding of phospholipase A2 to zwitterionic bilayers is promoted by lateral segregation of anionic amphiphiles. Biochim Biophys Acta. 1989 Mar 27;980(1):23–32. doi: 10.1016/0005-2736(89)90195-8. [DOI] [PubMed] [Google Scholar]
 - Kanfer J. N., McCartney D. G., Singh I. N., Freysz L. Acidic phospholipids inhibit the phospholipase D activity of rat brain neuronal nuclei. FEBS Lett. 1996 Mar 25;383(1-2):6–8. doi: 10.1016/0014-5793(96)00205-0. [DOI] [PubMed] [Google Scholar]
 - Kouaouci R., Silvius J. R., Graham I., Pézolet M. Calcium-induced lateral phase separations in phosphatidylcholine-phosphatidic acid mixtures. A Raman spectroscopic study. Biochemistry. 1985 Dec 3;24(25):7132–7140. doi: 10.1021/bi00346a017. [DOI] [PubMed] [Google Scholar]
 - Laroche G., Dufourc E. J., Dufourcq J., Pézolet M. Structure and dynamics of dimyristoylphosphatidic acid/calcium complexes by 2H NMR, infrared, spectroscopies and small-angle x-ray diffraction. Biochemistry. 1991 Mar 26;30(12):3105–3114. doi: 10.1021/bi00226a018. [DOI] [PubMed] [Google Scholar]
 - Liscovitch M., Ben-Av P., Danin M., Faiman G., Eldar H., Livneh E. Phospholipase D-mediated hydrolysis of phosphatidylcholine: role in cell signalling. J Lipid Mediat. 1993 Nov;8(3):177–182. [PubMed] [Google Scholar]
 - Mantsch H. H., McElhaney R. N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids. 1991 Mar;57(2-3):213–226. doi: 10.1016/0009-3084(91)90077-o. [DOI] [PubMed] [Google Scholar]
 - Nielsen L. K., Risbo J., Callisen T. H., Bjørnholm T. Lag-burst kinetics in phospholipase A(2) hydrolysis of DPPC bilayers visualized by atomic force microscopy. Biochim Biophys Acta. 1999 Aug 20;1420(1-2):266–271. doi: 10.1016/s0005-2736(99)00103-0. [DOI] [PubMed] [Google Scholar]
 - Piéroni G., Gargouri Y., Sarda L., Verger R. Interactions of lipases with lipid monolayers. Facts and questions. Adv Colloid Interface Sci. 1990 Sep;32(4):341–378. doi: 10.1016/0001-8686(90)80023-s. [DOI] [PubMed] [Google Scholar]
 - Quarles R. H., Dawson R. M. The hydrolysis of monolayers of phosphatidyl(Me-14C)choline by phospholipase D. Biochem J. 1969 Jul;113(4):697–705. doi: 10.1042/bj1130697. [DOI] [PMC free article] [PubMed] [Google Scholar]
 - Ransac S., Moreau H., Rivière C., Verger R. Monolayer techniques for studying phospholipase kinetics. Methods Enzymol. 1991;197:49–65. doi: 10.1016/0076-6879(91)97132-i. [DOI] [PubMed] [Google Scholar]
 - Salmon D. M., Honeyman T. W. Proposed mechanism of cholinergic action in smooth muscle. Nature. 1980 Mar 27;284(5754):344–345. doi: 10.1038/284344a0. [DOI] [PubMed] [Google Scholar]
 - Singer W. D., Brown H. A., Sternweis P. C. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem. 1997;66:475–509. doi: 10.1146/annurev.biochem.66.1.475. [DOI] [PubMed] [Google Scholar]
 - Slotboom A. J., Verger R., Verheij H. M., Baartmans P. H., Deenen L. L., Haas G. H. Application of enantiomeric 2-sn-phosphatidylcholines in interfacial enzyme kinetics of lipolysis. Chem Phys Lipids. 1976 Oct;17(2-3):128–147. doi: 10.1016/0009-3084(76)90057-8. [DOI] [PubMed] [Google Scholar]
 - Stieglitz K., Seaton B., Roberts M. F. The role of interfacial binding in the activation of Streptomyces chromofuscus phospholipase D by phosphatidic acid. J Biol Chem. 1999 Dec 10;274(50):35367–35374. doi: 10.1074/jbc.274.50.35367. [DOI] [PubMed] [Google Scholar]
 - Verger R., Mieras M. C., de Haas G. H. Action of phospholipase A at interfaces. J Biol Chem. 1973 Jun 10;248(11):4023–4034. [PubMed] [Google Scholar]
 - Verger R., Rietsch J., Van Dam-Mieras M. C., de Haas G. H. Comparative studies of lipase and phospholipase A2 acting on substrate monolayers. J Biol Chem. 1976 May 25;251(10):3128–3133. [PubMed] [Google Scholar]
 
